UBRISA

View Item 
  •   Ubrisa Home
  • Faculty of Science
  • Geology
  • Research articles (Dept of Geology)
  • View Item
  •   Ubrisa Home
  • Faculty of Science
  • Geology
  • Research articles (Dept of Geology)
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sulphur isotope constraints on formation conditions of the Luiswishi ore deposit, Democratic Republic of Congo (DRC)

    Thumbnail
    View/Open
    Kampunzu2005SulpherIsotope.pdf (1.102Mb)
    Date
    2005
    Author
    Lerouge, C.
    Cailteux, J.
    Kampunzu, A.B.
    Milesi, J.P.
    Fle´hoc, C.
    Publisher
    Elsevier www.elsevier.com/locate/jafrearsci
    Type
    Published Article
    Metadata
    Show full item record
    Abstract
    Luiswishi is a Congo-type Neoproterozoic sediment-hosted stratiform Cu–Co ore deposit of the Central Africa Copperbelt, located northwest of Lubumbashi (DRC). The ores form two main Cu–Co orebodies hosted by the Mines Subgroup, one in the lower part of the Kamoto Formation and the other at the base of the Dolomitic Shales Formation. Sulphides occur essentially as early parallel layers of chalcopyrite and carrolite, and secondarily as late stockwork sulphides cross-cutting the bedding and the early sulphide generation. Both types of stratiform and stockwork chalcopyrite and carrolite were systematically analyzed for sulphur isotopes, along the lithostratigraphic succession of the Mine Series. The quite similar d34S values of stratiform sulphides and late stockwork sulphides suggest an in situ recrystallization or a slight remobilization of stockwork sulphides without attainment of isotopic equilibrium between different sulphide phases (chalcopyrite and carrolite). The distribution of d34S values ( 14.4& to +17.5&) combined with the lithology indicates a strong stratigraphic control of the sulphur isotope signature, supporting bacterial sulphate reduction during early diagenesis of the host sediments, in a shallow marine to lacustrine environment. Petrological features combined with sulphur isotopic data of sulphides at Luiswishi and previous results on nodules of anhydrite in the Mine Series indicate a dominant seawater/lacustrine origin for sulphates, precluding a possible hydrothermal participation. The high positive d34S values of sulphides in the lower orebody at Luiswishi, hosted in massive chloritic–dolomitic siltite (known as Grey R.A.T.), fine-grained stratified dolostone (D.Strat.) and silicified-stromatolitic dolomites alternating with chloritic–dolomitic silty beds (R.S.F.), suggest that they were probably deposited during a period of regression in a basin cut off from seawater. The variations of d34S values (i.e. the decrease of d34S values from the Kamoto Formation to the overlying Dolomitic Shales and then the slight increase from S.D.2d to S.D.3a and S.D.3b members) are in perfect agreement with the inferred lithological and transgressive–regressive evolution of the ore-hosting sedimentary rocks [Cailteux, J., 1994. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. In: Kampunzu A.B., Lubala, R.T. (Eds.), Neoproterozoic Belts of Zambia, Zaire and Namibia. Journal of African Earth Sciences 19, 279–301].
    URI
    http://hdl.handle.net/10311/390
    Collections
    • Research articles (Dept of Geology) [33]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of UBRISA > Communities & Collections > By Issue Date > Authors > Titles > SubjectsThis Collection > By Issue Date > Authors > Titles > Subjects

    My Account

    > Login > Register

    Statistics

    > Most Popular Items > Statistics by Country > Most Popular Authors