Screen Integrable Lightlike Hypersurfaces
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Abstract. We investigate lightlike hypersurfaces of indefinite Sasaldan mani-
folds, tangent to the structure vector field £ and wheose screen distribution i=
integrable. We prove some results on parallel vector fields and on a leaf of
the integrable distributicn Do L (£} of this class. A theorem on s geomet-
rical configuration of the screen distribution s obtained. We show that any
totally contact nmbilical leaf of a sereen integrable distribution of a lightlike
hypersurface is an extrinsic sphere.
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1. Introduction

The general theory of degenerate submanifolds of semi-Riemannian (or Riemann-
1an ) manifolds 1s one of the interesting topics of differential gecmetry. Smee for
any semi-Riemannian manifold there is a natural existence of lightlike subspaces,
their study is equally desirable, but, due to the degenerate induced metric of a
lightlike submanifcld, one fails to use the theory of non-degenerate gecmetry in
the usual way, The primary difference hetween the lightlike submanifolds and the
non-degenerate submmanifolds is that in the first case the normal vector bundle
intersects the tangent bundle. Thos, the study becomes more difficult and strik-
ingly different from the study of non-degenerate submanifolds. To deal with this
anomaly, the lightlike submanifolds were ntroduced and presented in a book by
Duggal and Bejancu [9]. They introduced a non-degenerate screen distribution to
constract a nonintersecting lightlike transversal vector bundle of the tangent bun-
dle. Unfortumately, the induced ohjecta on a lightlike submanifold depend on the
choice of a screen distribution which, in general, i= not unigue. For a submanifold
of an indefinite Sasakian manifold, some aspects have been studied n [3] and its
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lightlike cose is very limited and some discussions can be found in [5], [11], [13]
and [14].

Physicallv, lightlike hvpersurfaces are interesting in general relativity since they
produce models of different types of horizons. For instance, the existence of Killing
vector flields has been often used as the most effective svmumetry, In fact, since the
Einstein's field equations are a complicated set of nonlinear partial differential
equations, many exact solutions have been found by assuming one or more Killing
vector fields (see [8] and [9] for more details and many more references therein).
In particular, Carter [6] used this information in the study of a null {lightlike) hy-
persuface which is also a Killing horizon. Lightlike hypersarfaces are also studied
in the theory of electromagnetism (see, for instance [0, Chapter 8]).

Dugeal and Bejancu dizseuss the Canchy-Rismann (CR) lightlike submanifolds of
indefinite Kaehler manifolds n [9, Chapter 6] and prove that, in a totally nmbil-
ical real lightlike hvpersurface of an indefinite Kashler space form. the nonzero
mean curvature vector satlsfles partial differential equations which imply that the
nonzero mean curvature vector B not parallel, The usual terminology says that
such an wmbilical lightlike submanifold is not an extrinsic sphere (=see [7] for more
details and many more references therein). As the notion of totally nmbilical sub-
manifolds of Kashlerian manifolds corresponds to that of totally contact nmbilical
submanifolds of Sasakian manifolds [12], the author in [13] showed that, in a to-
tally contact nmbilical lightlike hypersurface of an indefinite Sasakian space form,
the nonzero mean curvature vector also I8 not parallel.

In the present paper, we study the geometry of lightlike hvpersinrfaces of indefinite
Sasakian manifolds, tangent to the structure vector field, by particularly paying
attention to the geometry of screen mtegrable lightlike hypersurfaces, The paper
12 orgamized as follows, In Section 2, we recall some basic definitions for ndefinite
Sasakian manifolds and lightlike hyvpersurfaces of semi-Riemannian mamfolds. In
Section 3, we give the decomposition of almost contact metrics of hghtlike hy-
persurfaces in indefinite Sasakian manifolds which are tangential to the structure
vectar field as well as theorems on Lie derivatives. In Section 4, some theorems on
parallel vector fields and integrability of the distribution Dy L (£} {Thecrems 4.3,
4.4 and 4.7) are stated. We prove that, if any leaf of the integrable distribution
Da L (£ is totally geodesic, then @(TAM ) & @(N(TM)) is a Killing distribution.
Moreover, if it is parallel, then &(T ML) and @(N{TAM)) are Killing distributions
on that leaf { Thecrem 4.8). By Theorem 5.3 in Section 5, we establish the geomet-
rical confisuration of the screen distributions of a lightlike hvpersurface in Sasaldan
space forms. We also show that any totally contact umbilical leaf of an integrable
sereen distribution of a lightlike hypersurface 1= an extrinsic sphere (Theorem 5.5).
Fmally. in Section & we discuss the effect of any change of the screen distribution
on some different found results.
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2. Preliminaries
Let 3 be a (2n + 1)-dimensional manifold endowed with an almost contact strue-

ture (¢, £, 1), ie. @ is a tensor field of type (1,1), £ is a vector field, and 7 is a
1-form satisfyving

P =-T+pef, p€) =1 nod=0, =0and rankd = 2n. (2.1)
Then (@, £, 7, 7) is called an almost contact metric structure on M if (@, £.7) i

an almost contact structure on M and 7 is a semi-Riemannian metric on 3 such
that, for any vector field X, ¥ on M, it results

T E)=e=+1, gX) =& X), F@X.0Y ) =TX.Y)—en(X) n(Y). (2.2)
If, moreover, dg(X . Y) = —F(¢ XY ) and (V)Y = 7(X.Y )£ — = 5(Y )X, where
T s the Levi-©ivita connection for the semi-Riemannian metric . we call M an
indefinite Sasakian manifold. From the first equation of {2.2), £ is never a lightlike
vector field on 37,

Sasakian manifolds with indefinite metrics have been first considered by Tala-
hashi [15]. Thelr importance for physics have been point out by Duggal [8]. We
have two classes of indefinite Sasakian manifolds [8]: £ is spacelike (¢ = 1 and the
index of 7 & an even mumber ¢ = 2r) and £ = timelike (¢ = =1 and the index of
7 is an odd nmumber v = 2r +1).

Talkahashi [15] shows that it suffices to consider those indefinite almost con-
tact manifolds with spacelike £, Hence, from now on, we shall restrict onrselves to
the case £ spacelike unit vector (that is, (g, £) = 1).

In this case, the equality

(Vgo)Y =7(X. Y )E - ni¥ )X
implies V£ = —@(X), £ is a Killing vector field and (V7)Y = g(eX.Y) (see
[3]).

A plane section & in ']"PH is called ag-saction if 1t is spanned h}rf and & X,
where X is a unit tangent vector field orthogonal to £, The sectional curvature of a
desection o is called a geosectional curvature, A Sasakian manifold 37 with constant
gesectional curvature e is said to be a Sasakion space form and is denoted by M{c).
The curvature tensor B of a Sasakian space form M{e) is given in [16]: for any X,
Y, Z =[{TM), we have

Tiz=" +3 @(F. D)X - 3(X.2)T) + =2 (n(EXm (@)Y

- WEYIIWEEIIX+ TX.Z)Y )¢ —a(Y, E'II??EXIIE—rg( Y. Zjex  (23)
— @ X. 20T - WX, Y5 7).

R

Let (M.T) be a (2n + 1}-dimensional semi-Riemannian manifold with index s,
0 <s < In+ 1 and let (M, g) be a hvpersurface of M, with ¢ =3)3y. M 15 a

lightlike hvpersurface of M if ¢ is of constant rank 2 — 1 and the normal bundle
TM* is a distribution of rank 1 on M (cf. [3]). A complementary bundle of TAS+
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mTM is a rank 2n — 1 non-degenerate distribution over M. It is called a screen
distribution and is often denoted by S{TA ). A lightlike hypersurface endowed
with a specific screen distribution 15 denoted by the triple (M, g, S{TA)). As
TAM*L lies in the tangent bundle, the following Duggal-Bejancu result [9] has an
mmportant role in studying the geometry of a lightlile hypersanface.

Theorem 2.1. Let (M, g, S(TM)) be a lightlike hypersurface of (H, T). Then, there
erists @ unigue vector bundle N{T M) of rank 1 over M such that for eny non-
zero section ' of ML on a coordinate neighborhood L — M, there erists a unique
gection N of N{T M) on ld satisfying

g(N.EY=1 and  G(N,N) =GN, W)=05W & D(S(TM)).

Throughout the paper, all manifolds are supposed to bhe paracompact and
smooth. We denote ['E) the smooth sections of the vector bundle E. Also by
L and ¢ we denote the orthogonal and nonorthogonal direct sum of two vector
bundles. By Theorem 2.1 we may write down the following decomposition

TM S(TM) LTM L (2.4
TM = TM &N{TM)=58TM) L(TM Lan (AL, (2.5)

Let W be the Levi-Clivita connection on (F,Ej, then by using the first decompo-
sition of (2.5), we have Gauss and Weingarten formulae in the form

Vx¥ VrxY +hXY) and (2.6)
ViV —AvX + "Ff V., X, Y eliTM), Ve IN{TM)), (2.7)
where VxY, Ay X e I'(TM) and R{ X, 1), "Ff Ve (N{TM)). ¥V is asymmetric
linear comnection on M ealled an indueed linear eonnection, ¥4 is a linear connec-
tion on the vector bundle N (TAM). Moveover, i is a T{N{TM ) j-valued symnmetric

bilinear form and Ay is the shape operator of M concerning V.
Equivalently, consider a nommalizing pair { £, WV} as in Theorem 2.1. Then,

for all XY = TVT'M|gy), (2.6) and (2.7} take the form
TV = VxY+BX VN (2.8)
and TN —ApX +7(X N

It i= mmportant to mention that the zecond fundamental form B is independent of
the choice of screen distribution, in fact, from (2.8), we obtain

B(X,Y)=g(VxY.E) and (X} =§|:‘FJEN, E) "X, Y e T(T M)
Let P he the projection morphism of T4 on S{T'M ) with respect to the orthogonal
decomposition of TA . We have
VxPY = VLiPY+ C{X FYE (2.9)
and VyE = —ApX —71(X)E, (2,107
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where W5 FPY and ApX belong to T{S{TM ). O, A and V* are called the local
second fundamental form, the local shape operator and the induced connection on
S{TM). The induced linear connection V' is not a metric connection and we have

Vxgtl&) =BX. YW+ BX.Z2)0Y), XY <l(TMy)

where @ is a differential 1-form locally defined on M by 6(-) := g(N, ). Also, we
hawve the following identities,

g AR X PY)=B(X, FY). g(ApX . N)=0, B(X. E)=10

Finally, using (2.8), the curvature tensor fields A and & of 37 and M respectively,
are related as

R(X,Y)Z = R(X,Y)Z+ B(X,Z)ANY — B(Y,Z)Ay X
+((VxB)(Y.Z) — (VyB)(X.Z) + 7{X|B(Y. Z) — 7(¥)B{X, Z)) N,

where

(2.11)

(VxBWY.Z)= X.B(Y, Z)— B(VxY.Z) - B(Y.VxZ). (2.12)

In general, the screen distribution is not necessarily mtegrable (zee [9]). More
precisely, the following statement holds.

Theorem 2.2. (Duggal-Bejancu) Lef (M, g, S{TM)) be a lightlice hypersurface of a
semni- Riemannian manifold [H, 7). Then, the following assertions are equivalent:
(1) S(TM) iés an ¢ntegrable distribution;
(i) ALY =0V X)X Y e DNSTM) ),
(1) The shape opemtor of M is symmetric with respect to g.

3. Lightlike Hypersurfaces of Indefinite Sasakian Manifolds

Let (F, @, £, 7.7 be an indefinite Sasakian manifold and (M, g be itz lightlike hy-
persurface, fangent to the sfructure vecfor field £ (£ e TM ) If E is a local section
of TM-L, thenF(¢E, E) = 0, and ¢F is tangent to M. Thus ¢(TAML) is a distribu-
tion on M of rank 1 such that @(TA ) TAF+ = 10} . This enables us to choose
a screen distribution S(TAM ) sueh that it contains 3 TM*Y) as vector subbumdle.
We consider a local section N of N(TM). Since g(6 N, E) = —G(N.¢E) = 0,
we deduce that ¢ N is alko tangent to A and belongs to S(TAM). On the other
hand, since §(@ N, V) = 0, we see that the component of &N with respect. to &
vanishes, Thus ¢N & D{S(TM)). From (2.1). we have (a N, ¢E) = 1. There-
fore, @(TM J‘j B N(TM)) (direct sum but not orthogonal) is a non-degenerate
vector subbundle of S{T'M) of rank 2. It is kmown (cf. [3]) that it M is tangent
to the structure vector field £, then, £ belongs to S{TM). Using this, and since

TiaE &) = giaN,£) = 0, there exists a non-degenerate distribution Dy of rank
2n —4 on M suach that

S(TM) = (§(TML) & J(N(TM))) LDy L (£), (3.1)
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where (£ is the distril'm;ltiun SpaIL]l_Ed bv £, that is, (£) = Span{£}. The distribution
Dy 1= variant under ¢, that 1=, (D) = Dy
Moreover, from {2.4) and (3.1) we obtain the decomposition

™ (BTM>) @ BN(TM))) L Dy L & >1 TM™,
TM = (G(TMY) & @N(TM))) LDy L= =1 (TMY & N(TM)).
Mow, we consider the distributicns on A
D=TM! LeTMY LD,  D:=a3NTM).
Then, D is nvariant under @ and
TM = Da&D' 1. (3.2)

Let us consider the local lightlike vector fields I7 .= — @ N, V = —@FE. Then,
from (3.2), any X on M i= written a8 X = RX + QX + (X )E, QX = w(X)I]
where R and ) are the projection morphisms of T'A into D and IV, respectivel v,
and u is a differential 1-form locally defined on M by wi-) == (V. ). Applying &
to X and (2.1) , we obtain

X =X +ulX )V,
where ¢ is a tensor field of type (1,1) defined on M by ¢ X = ¢ X and we also

hawve
X =X+ X ) +uX)07, VX e T(T M) i3.3)
By using (2.1) we derive
G(@X.6V) = a(X.¥) — n{ X)n(¥) — (¥ Jo(X) —u(X o (V).
where » is 1-form locally defined on M by »{-) = g(I, -). We note that
gl XY )+ g(X .Y ) = —u{X )#Y ) —wY 100X ).
For any XY = T{TM), we have the following useful identities:

Vxf = —oX, (3.4)
B(X.&) = —u(X). (3.5)
ClX.&) = —v(X), (3.6)
B(X.U') = C[X.V), (3.7)
(Vxu)¥ = —B(X.6¥)— u(Y)r(X). (3.8)

Propositiom 3.1. Let (M, g, S(TM)) be a Lghtlike hypersurface of an indefinite
Seeakion manifold (M, ) withE e TM. For any X, ¥ € I'(TM). the Lie deriva-
tive of g with respect to the vector field V7 iz given by

(L) XY =X al ) + V(X)) + X, V]) - 2u(VxY) (3.90)

Froof. From a straightforward calculation we complete the proof. (|
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Let Fﬂcj be an indefinite Sasakian space form and A be a lightlike hyvper-
surface of M {c). Let us consider the pair {E. N} on id < M (zee Theorem 2.1)
and by using (2.11), we obtain

(VxB)(Y.Z)— (Vy B)(X, Z) = 7(Y)B(X, Z) — (X ) B(Y, Z)
. (3.10)

4

Theurﬂn 3.2, Let M be a Ughtlike hypersurface of an indefinite Sasakian space
form M) of constant curvature ¢ with £  TM. Then, the Lie derivative of the
second fundamental form B with respect fo £ és given by

ool (@Y, Z)u(X) — 76X, Z)u(Y") — 2g(aX, V)u(Z)) .

(LeB) XY )= —7(£)BXY), YA Y [(TM). (2.11)
Froof. Using (2.12) and (3.4), we obtain
(VeB)AXY )= (LeB)XY) + B(oX. YY)+ BIX, ¢} ). (3.12)
Similarly, using (2.12), (3.4) and (3.5), we have
(VxB)EY )= —-XNulY )+ BlaX.Y)+u(VyY ). (2.13)
Subtracting (3.12) and (3.13), and using (2.8) we obtain
(VeB)(X.Y) — (VxB)(£.Y) = (L B)(X.Y) — u(Y)7(X). (3.14)
From (3.10) and after caleulation, the left hand side of {3.14) hecomes
(VeB)(X.Y) — (Vx B)(£.Y) = —u(Y)r(X)— r(§)B(X.Y).  (3.15)
The expressions (3.14) and (3.15) imply (L B)(X.Y) = —7(£)B{A.Y). O

From (2.3) and (2.11), a direct calculation shows that

(Vx C)(Y,PZ) — (VyC)( X, PZ) +7(Y)C(X, PZ) — 7(X)C(Y, PZ)

o+ 3 c—1

=—— @Y, PZ)8(X) —7(X,PZ)8(Y)) + (X )i PZ)Y)

- - (3.16)
(Y Jn(PZ)(X) +5(FY, PZ)0(X) 93X, PZ)o(Y)

~Go X, Yw(PZ)).

Lemma 3.3. Let (M, gq. S{TM)) be a lightlike hypersurface of an indefinife Sasa-

kdan manifold (M.q) with £ cTM. For any X. Y = TiTM) é results
g(VxUY)+u(ANX)8(Y) = —C(X, 6V — 8(X n(Y) +7(X(Y).  (3.17)
Froof. By straightforward calculation and also by using (2.8) and (2.9) we obtain
a(VxU V) + u(AnX)8(Y) = —F(ANX.8Y) — 8(X (¥ + 7(X (Y
which completes the proof. d
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Lemma 3.4. Let (M, g, S(TM ) be a lightlike hypersurface of an indefindte Sasakian

manifold (M, 7) with £ € TM. Then, the covariant derivative of v and the Lie
derivative of g with respect to the vector field U7 are given, respectively, by
(Vxull¥ = —OX Y)Y )+ i A (Y, i3.18)
(Lpg)X.Y) = X))+ Vo) +o[X. Y] - 20(VxY), i3.19)
forany X, Y =T(TM).

Froof. The proof of (3.18) follows from (3.17), while {3.19) follows from direct
caloulations. O

4. Screen Integrable Lightlike Hypersurfaces of Indetinite Sasakian
Manifolds

Let A4 be a lightlike hvpersurface of an indefinite Sasakian space form H(cj with
£ e TM. From the differential geometry of lightlike hvpersurfaces, we recall the
following desirable property for lightlike gecmetry. It is kmown that Lightlike sub-
manifolds whose screen distribution is integrable have interesting properties. Now,
we study integrable distributions with specific attention to the screen distribution
S(TM) and the distribution Dy L (£,

By Theorem 2.2, the screen distribution S{T'M) of M is mtegrable if and only
if the second fundamental form of S(T'A) 1= symmetric on [ S(T°M ) ). However,
we have

u([X,¥]) = BiX,aY)— B(¢X,Y) forany X, ¥ = T(D L (&)
So, 1t 18 very easy to see that the distribution IV 1 (£) 18 integrable if and only if
B(X,3Y) = B{#X.Y).
Proposition 4.1. Lef (M, q, S(TM)) be a Eghilike hypersurface of an indefinite
Sasakian space form M(c) with £ & TM. If the screen distribution S(TM) is
integrable, then i results
LeCHAPY ) =7(6)C0(X,FY) forang X, Y e DT M) (4.1)
Froaf. If the sereen distribution S{T°M ) of a lightlike hyperaurface M is integrable,
then, from (3.16) and using (3.8), for any X, ¥ < IVT M), we have
(VeO)X PY) — (VxCONEPY) =i PY )R X )+ 7( X))o PY)
+7(£)CXL FY).
On the other hand, using (3.6) and {3.17), we have
(VeOWX,FY) = (O PY)-CVeX PY) - C(X,Ve(PY))
= ([LeC)( X, FY )+ CloX, FY)+ C(X, ¢FY), (4.3)

(4.2)

(VxC)EPY) = —Xw(PY )+ C(0X,PY |+ v(Vx PY)
= O[X, ¢PY )+ 8(X 1 FY ) — T X w(PY) + C(aX. PY). (44)
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Putting (4.3) and {4.4) together in {4.2). we obtain (4.1). (|

Let us assume that the screen distribution S{T' M) of M is integrahble and let
M be aleaf of S{T'M). Then, using (2.5) and (2.9), we obtain

TxY = VLY +C(X.YIE+ BX.Y)N
VLY +RI(XY), VXY e D(TM), (4.5)

where V' and &' are the Levi-Civita connection and second fundamental form of
M in M. Thus,

XY I=CIX,YVE+ BXY N, X, Y=DTM. (4.6
In the sequel, we need the following lemma

Lemma 4.2, Let (M, g, 5(TM)) be a screen integmble lightlike hypersurfoce of an
indefinite Sasakion mamnifold (H,Ej with £ = TM and M' be a leaf of S{TM).
Then, for any X € (T M').

Vs = —oX +v(X)E, 4.7)
L —1:(:![5':.5(')5'—'L'(AIE-XJN—FE(:’LNXJ + 7 X, (4.8)
ViV = —u(AxX)E — u(ARX N +d(ApX) — 7(X V. (4.9
Froof. From a straightforward calculation we complete the proof. O

It is well known that the second fundamental form and the shape operators
of a non-degenerate hypersurface (in general, submanifold) are related by means
of the metric tensor field. Contrary to this, we see from (2.9) and (2,10}, in the
case of lightlilke hypersurfaces, the second fundamental forms om M and their
screen distribution S(T'M) are related to thelr respective shape operators Ay
and A_‘E-. As the shape operator is an information tool in studing the gecmetry
of submanifolds, their studying turns out very important. For mstance, in [10] a
clags of lightlike hypersarfaces whose shape operators are the same as the one of
their screen distribution up to a conformal non zero smooth factor in F{M) was
considered. That work gave a way to generate, under some geometric conditions,
an integrable canonical screen (see [10] for more details),

Mext, we study these operators and give their implications in lightlike hyper-
surface of mdefinite Sasaklan manifolds with £ = TAM.

Proposition 4.%. Let (M, g, S(T;'l-fﬂ be a screen infegrable Bghtlike hypersurface of
are indefinéte Sasokéan manéfold (M, 7) with £ < TM and M’ be a leaf of S{TM ).

Then, we have

(1) The vector field [T is pamllel with respect to the Levi-Civifa connection V' on
MY and ondy if

ANX = (ANX)E+ v(ANX )V + u(AnX ) YX e (TM")

and T vanishes on M';
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{i1) The vector field V is paralled with respect to the Levi-Civita connection V' on
M if and only if

ApX =glApN M+ v[Ap X W + w(ApX )T YX I‘I:Thff'j
and T vanishes on A,

Froof. (i) Suppose [ is parallel with respect to the Levi-Civita connection %' on
M'. Then, by using (4.8, we have
HANX) = v(ANX)E +v(ALX N — (XU for any X = T(T M)
Simee d(AnX) = d(AnX ) + u(Ay XN, by using (3.7), we obtain
AN ) = v[AnX I — (X0 (4107

Apply ¢ to (4.10) and by using (3.3) and the fact that ¢I7 =0, we obtain

AnX = glAn X+ (A X +widm )V 4.11)
Putting (4.11) in (4.8) and using {3.7), we get 7({X) = 0. The converse 1= obvious.
In the =similar way, by using (4.9} the assertion (i) follows. O

Corollary 4.4. Let (M, g, S(TM)) be & seveen integrable Fghtlike hypersurface of an
indefinéte Sasakian mangfold (M, 7) with £ € TM and let M’ be a leaf of S(TM)
such U7 and V are parallel with respect to the Lewi-Civite connection V' on M".

Then, the type number t'(x) of M’ (with x £ M’ ) satisfies '(z) < 3.
FProof. The proof follows from Proposition 4.3, O

Let W he an element of &(TAM 1) & ¢ N(TAf)) which is a non-degenerate
vector subbundle of S{T M) of rank 2. Then, there exist non-zero functions a and
b auch that

W =al” + bl
It is eagy to check that @ = v{W) and b = w(W). Let w be a 1-form locally defined
by w(-) = a(W, ).

Lemma 4.5. Let (M, g, S{TM ) be alightlife hypersurface of an indefinite Sasakion
manifold (M,g) with £ = TM. Then, the covarient derivative of w and the Lie
derivative of g with respect to the vector field W are grven, respectively, by

(Vxw)l = —o(W)B(X,¢Y) — u(W) (C(X.6Y ) +8(X)7(Y)), (412)
(Lwa)X.V) = Xw¥ )+ VX)) +w([XY]) — 2wV ), (4.13)
for any X, Y e (T M).
Froof. Tsing (3.8) and (3.18), for any X, ¥ < I'(T°M) we obtain
(VxwllY = wY)iVyxo)W 4+ )iVew)Y +o(Y (Ve W +u (W) (Vyo)l
= —oW)B(X, oY) — u(W){T(X. oY) + & X )n(Y))
which proves (4.12), while (4.13) follows from a direct calenlation. O
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Lemma 4.6, Lef (M, g,S(‘]":‘H’l&e a screen infegmble lightlike hypersurface of an
indefinite Sasakion manifold (M, q) with £ = TM and let M’ be a leaf of S{TM).
Then, for any X, Y = D{TM"), i results

wViY) = —w(eh'(X,aY)), i4.14)
WX, ¥]) = wigh (X, Y)— dh'(X, o). (4.15)

Froof. Using (4.5) and(4.8), for any X, ¥ = I{TM"') we obtain

wVEY) = g(W.V5Y)=FW.VxY) = o(W)u(Tx V) +u(Wp([Tx V)

v(WIBIX, oY) +u(W)CX, ¢} ) = —wi(oh (X, 8Y))

and

WX, Y]) = w(V5Y) — w(V§X) = —w(@h' (X, 6¥) — gh'(Y,. X)),
which complete the proof. Od

We report the following result proved in [11].

Theorem 4.7. Let (M, g, S(TM)) be a Bghilike hypersurface of an indefinife Sasa-
kian manifold (M,7) with £ = TM. Then, the distribution Dy 1L (&) dis integrable
if and only if for all X, Y e T{Dy L (£)) it resulis
Cilad Y) = OfA, 21,
Bl¢X,Y) B{X .Y,
CAY) = (YA

Theorem 4.8, Let (M, g, S(TM)) be a Hghilike hypersurface of an indefinite Sasa-
kdan manifold (H,E}l with & € TM. Suppose the distribution Dy L (£} is infegrable.
Let MY be a leaf of Dy L {£). Then,

(1) If M és totally geodesic in M, then M' is auto-parallel with respect fo the
Lewi-Chivita connection V' én M and o(TMY) & @(N(TM)) is o Kiling dis-
tribution on M*;

(1) If M is parallel with respect to the Levi-Civita connection V' in M. then
G(TMLY and o(N(TM)) are Killing distribution on M'.

Froof. (1) Writing ¥ e T'iDq L (£)) as
An—4

alY. Fi)
¥ o= E mﬂ + 0¥ e,

where g(F;. F;) # 0and {F;}, .., _, 15 an orthogonal basis of Dy, So, it is easy
to check that, for any X, ¥ e T{T'M"), we have

Zn—d4 K.F; .
H(X.0Y) = 3 %f; (X, ¢F).
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If M i totally meodesic, then, for any X, ¥V e (Do L (&), it 2B A(X,¥V)=0.In
particular,

g, Fj)
; a(Fi F;)
The auto-parallelism of Af" follows from (4.14). Using (4.13), {4.14), {4.15) and
the fact that w{X) =0, X = T(Dy L {£)), we chtain (Lyg)[X.Y) = 0. 8o
HTMY) & @N(TM)) is a Killing distribution on M.
(i) If M7 is parallel with respect to the connection in M, then, for any X, ¥ =
OIrMy, (Vi RY = 00 That is, (VO = C(X Y )7(X) = 0and (Vy B)Y +
B(X Y )7(X) = 0. Using (2.12), (3.4, (3.5), (2.8) and (3.11), since $(TML) L
(Do L (g and Dy L (£} integrable, we have

0 (ViB)(X.Y)+7(£)B(X.Y)
B(#X,Y) + B(X. ¢¥) = —(Ly-a)(X.Y).
Also, using (4.1) and since F(N(TM)) L (Dg L (£)), for any X, ¥ £ [(TM'), we

ohtain

R(X,$Y) = (X, 6F, ) =0,

0 = (VIO)X.Y) —r(£)C(X.Y)
X YV + O, Y ) = —(Lpg)( XY,
which completes the proof. (|

Mote that, the Lie derivatiwe (4.13) can be expressed in functions of Lie

dertvatives {2.0) and (3.10) as, for any X, ¥V 2 T{T'M ), it results
(Lwa)iX.Y) = Xa(Wh(Y) + YW (X)) + Xu(Win¥) + YaWe(X)
Fo(W Ly g XY 4 u( W)Ly g X. 1)

Theorem 4.9, Let (M, g, S{TM)) be a lghilike hypersurface of an indefinife Sasa-
kdan manéfold (H, 7 with £ € TM . Suppose the distribution Dy L (£) is integrable.
Let M be a leaf of Dy L (£}, Then, E{Th-fl]lﬁ-g(h' (M) is a Killing distribution
on M' if end only if E{T;‘l{l] and @(N(TM)) are Killing distributions on M.

5. Totally Contact Umbilical Leaf of Integrable Screen
Distributions

In this section, we deal with the geometry of the mean curvature vector of a leaf

of an integrable screen distnbution of a hightlike hvpersurface M of an mdefimte

Sasakian space form 3 () by introducing a new concept. First of all, a submani-

fold A 1= said to be totally umbilical lightlike hypersurface of a semi-Rismannian
manifold A if the loeal second fundsmental form B of M satisfies

B(X.Y)=pe(X.Y), 9X,Y eT(TM),

where p is a smooth function on 4 C M.
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If we assime tE,t A is totally nmhbilical lightlike hvpersurface of an indefinite
Sasakian manifold A, the Gauss formula (2.6) implies that

X = —Vxé& = —Vxé— B(X.5)N

and since #(£) = 0, we have B(£.£) = 0. Being also B(X. V) = po(X.Y), for
any X, ¥ 2 T{TM), we get 0 = B(£,£) = p. Hence, M is totally geodesic. Also,
X = &N — pr( X )N = 6X . that is M is invariant in 3. Therefore, we can state
the following result.

Proposition 5.1. Lef (M, g, S{TM)) be a Hghtlike hypersurface of an indefinite
Sasakion manifold (H, 7) with § « TM. If M is tofally wumbilical, then M is
totally geodesic and fnvariant.

It follows from the Propesition 5.1 that a Sasakian M(c) does not admit
any non-totally geodesic, totally umbilical lightlike hypersurface. From this point
of wiew, Bejancu [2] considered the concept of totally contact nmbilical semi-
invariant snbmanifolds. The notion of totally contact nmbilical snbmanifolds was
first defined by Kon [12]. As the notion of totally contact geodesic submanifolds of
Sasakian manifolds corresponds to that of totally geodesic submanifolds of Kashle-
rian manifolds, it is important to investigate the parallelizm of the nonzero mean
curvature vector. The terminology of extrinsic sphere [7] also is going to be used
in case of totally contact geodesic submanifolds.

We say that a totally contact wmbilical submanifold 18 an  exfrinsic sphere
when it has parallel non zerc mean curvature vector (see [7]). In [13], the anthor
showed that if M 1= a totally contact umbilical lightlike hypersurface of H{cj with
£ e TA, that is, the second fundamental form i of A satisfies

RXLY ) =H (g(X Y] — (X n(¥ ) +0(X)BY. )+ (Y] BA,L, (51)

where H = AN normal vector field and A is a smooth function on & < A, then A
satisfies the partial differential equations

E-A+M(E)—X=0D (5.2)
and PX A+ AM(PX)=0, ¥XeT(TM). (5.3)

These equations are similar to those of the indefinite Kashlerian case (see [0] for
more detalls). However, there are nontrivial differences arising in the details of
the proof in [13]. We also note that the partial differential equations (5.2) and the
modified (5.3), PX - A+ Ar(PX) =0 with PX = [(S{TM) — (£)) (that iz, we
exclude the partial differential equation in terms of £) arize when the submanifold
M is a Db [¥-totally umbilical lightlike hypersurface, that iz, B{X.Y) = pg(X, 1),
for any X, Y = (D & D). Because, in the direction of 10 & D', the function g
1= nowhere vanishing, in general, such a concept is called proper totally umbilical
(see [0]).

MNote that, if A = 0 in (5.1), then the lightlike hypersurface M is said to
be totally contact geodesic. The notion of totally contact geodesic asubmanifolds of
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Sasakian manifolds corresponds to that of totally gecdesic submanifolds of Kashle-
rian manifolds.

Al=o, from (5.2) and (5.3), we have
VEH =F(H.EPN  and  ViyH =0, 97X = T(TA).
So, for any X = ['(T'M), we obtan
ViH = VixH +60(X)VEH = (X )g(H, E)"N,
that is, ‘\Tﬁ H £ 10, and consequently, we can state the following result.

Theorem 5.2, Lef H(cj be an indefinite Sasakian space form and A be a fotally

contact umbilical {or D& IV -tofally umbilical) lightlike hypersurface of M () with

E£eTM. Then, M cannot be an ertrinsic sphere.

Mow, we pay attention to a specific example of a screen integrable lightlike hy-
persurface. We =say that the screen distribution S{TM ) is totally contact nmbilical
if the local second fundament form & of S{T' M) satisfies

C(X,¥) = a(a(X,Y) — g(X (Y ) +(X)C(V.6) + q(Y )OX.£),  (5.4)

where o is a smooth function on & < A, If we assume that the screen distribution

of the lightlike hypersurface 3 of an indefinite Sasakian manifold, with £ = TAT,
1= totally contact wmbilical, then it follows that O is symmetric on T{S(TM ) and
hence, by Theorem 2.2, the distribution S{TM) i= integrable.

Theorem 5.3, Let (M, g, S{TM)) be a lghtlike hypersurface of an indefinite Sasa-

kian space form Mie) with&  TM sueh that S{TM) s fofally contact umbilical
Then, S(TAM) is totally confact geadesic and o = —3.

Froaf. By a direct calculation of the right hand side in (3.16) and using (5.4), we
get
(VaONY, PEZ)— (Vy )X PE)+ Y )OIX PE) — (X 0(Y. PE)
= (o(Y.PZ) — (Y )q(PZ)) X.0 — (a(X.Z) — g{X)(PZ)) V-
+a(BX, FO8Y 1 - BlY, FA)8(X))
oo (X)) + a(¢X, V) —u(Y )0(X) — g(@¥ X)) n(FZ)
+ @ (g9 X, PZ)n(Y) — a(eY, PZ)n( X))
+ (u(X)8Y) + oo X. V) —uY )AX) — g(a}, X))v(PZ)
+ (g(Vy U, PE)p(X) — a(VxU PZ)n(Y))
+ (g(¢X, PZ (Y] — g(aY, P2 (X))
+(BY,UMX )+ gVl X)— B(AINRY )
— g VxU Y niPE)+ (Y )O(X PE) —7{ X )Y FZ).
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Putting X = F in (5.5) and in the right hand side of {3.16), we obtain
(@Y. PZ) —n(Yq(PZ))(E.0)—aB(Y, PZ) - 2au(Y g PZ)
—au(PZ)\qY) — 2u(Y)v(PZ) — g Ve, PZ (Y ) — u(PZ (Y
+ (BY.I7) + g(Vy U E) — o(VeU.Y)) 5(PZ) — +(E)(Y. PZ) (5.6)

= v, Py + L V(P2 4 u(PZ)urY) + 20 ().

Replacing ¥ = PZ = U in (5.6), we have

FR(E.UNUN) = —aB(U.U)=—al (V)= —a® =0.
The last assertion 12 obtaned by taking ¥ =1 and P& =17 in (5.6). O

Corollary 5.4. There exisé no lghtlike hypersurfaces M of indefinite Sasakion space
forms H(cj fe —3) with & =T M and totally contact umbilical sereen disfribu-
fiom.

Theorem 5.5, Let (M, g, S(TM)) be a screen integrable Gghtlike hypersurface of an
indefinite Sosakion manifold (M. ) withé e TM . Suppose any deaf M’ of S{TM)
is totally contact umbilical immersed in M os non-degenerate submanifold. Then,
M" s an extrinsic sphere.,
Proaf. By combining the first equations of (2.8) and (2.9), we abtain
Ty = VY + O Y IE 4+ B(X YN

= VY +R{AY), VXY eD(TM"). (6.7)

Denote by H' the mean curvature vector of M. As N(TM) & TM* is the normal

bundle of M, there exist smooth functions A and p such that H' = AE + plV.
Since M is totally contact wmbilical immersed n M, we have

BIX,Y) = (a0 ) — g0 )g(¥ ) H' + q(XR (¥, £) + (¥ I (X, §).

So, from (5.7) we obtain
VxY = VY + (gAY ) - n(X)n¥)) H
= (@X )oY )+ 5Y)o(X)) E — (X )ul )+ p(Y)u (X)) N
which implies
VxVyZ = Vi VEZ + (9(X. VL Z) - n X (Vi Z)) H'

+{o(VyY. Z2) +a(Y Vi Z) —o(Vx &Y (&) — ole, ViY)n(Z)

— (Y )a(Vx&.Z) —n(Y)e(&, Vi Z)) H'

+{aV. Z) = 0¥ n(Z))VxH — (X 0(VyZ)+n(VyZwX)

+ XY il Z)+ (Y ) XulZ) + Xn(Z )Y )+ niZ)Xo(Y)) E

— (Y W(Z)+ 9 Z)o(Y)) Vx E — (9(X )Ju(Vy Z )+ n(Vi- Z ju(X)

+ XY ju(Z) + Y )X u(Z) + Xonp(Z)uly") + 7(Z2) Xu(Y)) N

— (Y Ju(Z) + 9 Z}ulY)) VN

(58)
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Also, we have
VienZ = Vix v Z + (@[ Y] Z) - n[X.Yin(Z) H' — (n([X.Y]jw(Z)
+ lZ (XY E — (X, YTu(Z) +9(Z)u(X.Y])N.
From (5.8), (5.9) and (4.7)-(4.9), after calculations, we obtain
R(X.Y)Z=R(X.Y)Z +(9(¢X.Y )n(Z) + 9(#X. Z)n(Y ) — a(#Y. X)n(Z)
— a(6¥. Z)p(X))H' + (a(V.Z) —n(Y)n(Z)) Vx H'
—(@(X.Z) = (X (Z)) Vy H' — (—n(X ) (¥ )u(Z) +v(X)e(8Y. Z)
+ o(Z)[a(#¥, X ) — g(6X, V)] + 0¥V 1T (X 0(Z) —o(Y)a(eX. Z)
+ A Z)F(X)p(¥) -7 (Y )u(X)]) E — (n(Y)v(Z) +n(Z)o(Y))VxE
(X (2] + 9 Z (X)) Vy E — (g(X)7(Y)u(Z) + u(X)g(#Y. Z)
+ u(Z)[g(¢Y. X) — g{¢X. V)] — n(Y)7 (X )u(Z) — u(Y)g(4X. Z)
+ A Z)(Y)u(X) — r{(X)u(Y ) N — (n(¥Y)u(Z) + n(Z)u(y ))Vx N
+ (X )u(Z) + n(Z )u(X)) Vy N.
Consequently,
FA(X,Y)Z.E) = (96X, Y)n(Z) + a(6X. Z)n(¥) — a(¢V. X }n(Z)
— g(8Y., Z)n( X)) TH'E) + (a(Y. Z) — (Y )(Z)) TV 5 H', E)

(5.9)

— 510
— (o(X. Z) ~ (X (Z)) ATy H'. ) +u(Z) @(6X.Y) —g(X,0¥)) )
+u(Y)a(¢X.Z) — u(X)a(#V. Z),
AR(X.Y)Z.N) = (a(6X.Y)0(Z) + a(éX. Z)n(Y) — alé¥. X n(Z)
= a2 TH N + @ 2) =) AT HN)

—(9(X. Z)— n(X)n(Z))F(Vy H' . N) +v(Z) (g(¢X.Y) — g{X,¢Y))
+ 0(Y)a(¢X. Z) — v(X)a(¢Y, Z).
From (5.10% and using (2.3), we obtain

© L @@, Z)u(X) ~7FK. Z)u(Y)  20(FX, Vu(2)
= (0(oX. Y )n(Z) + o(6X. Z (Y ) — a(2Y. X )n(Z)
— a(@Y. Z)(X))A(H  E)+ (@Y. Z) - o(Y)n(Z)T(VxH E)  12)
—(9(X, Z) — (X )n(Z))3(Vy H' E) + u(Z) (a(¢X.Y) — g X, ¢V))
+u(Yig(eX, Z) —u( X g(aY, Z).
Taking X = £ n this equation, for ¥ = U7 and Z =V, we have y(ﬁEH’,Ej =10
Now, if XY, Z e T{TM"— &), from (5.12), we have

GVxH EWY =gVyH' E\X. (5.13)
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Similarly, from (5.11) and (2.3), we have
FVH N)=0 and FVxH N =3VvH NIX. i5.14)

Mow, suppose that there exists a vector field X on some neighborhood of 447 such
that TV 5, H'. E) 2 0 and F(V x, H. N} £ 0 at some point p in the neighborhood.
From (5.13) and (5.14) it follows that all vectors of the fibre TM' — £ are collinear
with Xg|,. This contradicts dim(TAf' — £} > 1. This implies TV x H', E) = 0 and
FVxH N)=0,%X € ['(TM' - £). Sinee E{fEH",E:I = [ and 'gl:féH",Nj =
0, so, we have (WxH' E) = 0 and §(VxH' N) = 0, VX £ [NTM’). These
lead, respectively, to g(V#FH'.E) = 0 and g(ViH' . N) = 0, where V'* is a
linear eonnection on N (T M) & TM* defined by Vi E = Vi E = —7(X )E and
V#N =V%N = 7(X )N, which completes the proof. O

Mote that, if at each point p = M we choose a connected open set & on M
such that T,G' = S{T, M) and if M" is any leaf of the integrable distribution TG,
then, for any X = [(TM"), o(V¢ H.E) =0 and (V¢ H.N) =0 lead to H iz a

constant vector field on M.

6. Concluding Remarks

It is well kknown that the geometry of a lightlike hypersurface depends on the chosen
screen distribution. So, it s important to investigate the relationship hetween some
eeometrical objecta, studied above, with the change of the screen distribution. Note
that the local second fundamental form B of M on i is mdependent of the choice
of the screen distribution (see [9]).

MNow, we study the effect of the change of the screen distribution on those
ahove results which alao depend on other geometric objects apart froom B, Recall
the following four local traalsful'iﬂatiun equations (see [0] page 87) of a change from

S(T'M) to another screen S(ﬁ'lf I:

Zn—1
K, = Y KI(K;—€cE),
=1
1 Zn—1 2e—1
s _ r_ = a ™
N = N 2(; eV E + 2 ik, (6.1
FX) = 7(X)+BX.N' —N),

. 1 2m—1 Zn—1

Vx¥ = Vx¥+ ng!m.;?:; ei(ei) *)E ; ), (6.2)
where [, and {J%;} are the local orthonormal basis of S(TM ) and §(TM ) with
respective transversal sections N and N for the same mull section E. Here, o;
and K7 are smooth functions on i and {e, ..., éa,_1} 18 the signature of the hase



44 F. Mas=amha Mediterr. j. math.

2n-1

1Ky, Kot Denaote by w the dual 1-form of K = E & K (characteriatic

=1
vector Held of the screen change) with respect to the induced metric g of M, that
B KX )=g(X K), X eD{TM).
Let P and P be projections of TAf on S(TM ) and ﬁ(‘ﬁ't-f J, respectively with
respect to the orthogonal decomposition of TAL. So, any vector field X on A can
be written as

X = PX +6(X)E = PX +8(X)E,
where #(X) = g(X, V) and #(X) = g(X, N). Then, using (6.1) we have
FX =PX —w(XE and C(X,FY)=C(X,PY), vX.Y e [(TM).

Using {6.1) and (6.2) the relationship between the second fundamental forms
and & of the screen distribution S(TA) and S{TA ), respectively, is given by

F(X, PY) = C(X, PY) - %x(?xf‘i’ + B(X.Y)K).

All equations above depending only on the local second fundamental form O (mak-
ing equations non unique ) are independent of the screen distribution S{I'M) if and
onlv if KV PY + BX,Y)K)=0 YA Y & [T M).

The equations (3.9, (3.19) and {4.13) also are not unique as they depend on
', @ and 7 which depend on the choice of a sereen vector byill:}le. The Lie deriva-
tives L.y and Er_.] of the screen distributions S{TM ) and S‘(TM), respectively, are
related through the relations:

(Lyg)(X.Y)

(Lva) (X Y) —ux(¥),

Epa(X.Y) = Loa)(X.V)+a(VixPoY)

+(B(X, 6Y ) + B(¢X.Y))K) — %m:-z(cw + Xov))

ey (V) + ul e K +ox (Y,

(L @)(X.Y )+ (F(F) — (W) (Lva) (X, V) + u(X )
+(e(W) — u(W)) (Lug)(X.V) - o(X vy ))

—u( W) (X )

(Lpa)l(X.7)

where
fx(Y) = F(X)BY.K)+ f(Y)B(X.K),V x Pé¥'} = Vx PéY + VyPoX,
BX) = o(X) %H[qﬁX Fu(X)K), Xy = XF(¥) + ¥ F(X),

f dencting a 1-form.
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