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FINITE ELEMENTS IN PRACTICE: A REVIEW OF ENGINEERING'S MOST VERSATILE
METHOD

Oagile J. Kanyeto
Department of Civil Engineering
University of Botswana
Gaborone, Botswana

Advantages of using the Finite Element Method (FEM) In structural engineering practice are presented in this
Ppuaper. A brief description of the method is given with the aim 1o illustrate the rich and solid mathematical basis
that makes its foundation. The paper then presents some guidelines on how to build @ good model Jor Finite
Element Analysis (FEA) purpases. The guidelines emphasize the need Sfor the analyst to have a clear
understanding of the physical problem and of the behaviour of the clements he employs 1o carry owt the analysis.

A practical example is presented in order to illustrate the
commercial FE software package. This example Sorms

ope of analysis and results that can be obtained from a
part of the research work that was carried out by the

author. And finally, it is recommended that all praclicing steuctural engineers must learn the basics of the finite
clement method, and be equipped with some FE software packages. since it is the most commonly used and
trusted method in the world of engineering today. In order 1o keep up with the rest of the world in engineering
advancements, the author fimds it vital to equip all engineers with the latest engineering software packages and to

elevate continuing engineering education,
1 INTRODUCTION

The theory of structures developed in the 19th
century focused on truss analysis methods, such as
the force method. Non-frame-type structures could
sometimes be analyzed by solving the governing
differential  equations [1).  However, complex
structures with high order of redundancy, triggered
by the introduction of reinforced concrete at the
beginning of the 20th century. could not be analyzed
with the classical methods of the 19th century. This
prompted development of more powerful methods of
analysis such as: the slope-deflection method. the
method of moment distribution and the matrix
methods of analysis,

The finite element method (FEM) was developed in
the 19405 as an extension of the already established
matrix analysis techniques, particularly for analyzing
complex structural systems for which exact solutions
do not exist. The method is a numerical procedure
that produces many simultancous algebraic equations,
which necessarily implies a considerable amount of
computation. For this reason, the use of a digital
computer for data processing is implicit. Results are
rarely exact. However, errors are decreased by
processing more equations, and results accurate
enough for enginecring purposes are obtainable at
reasonable cost.

During the 1960s, the FEM flourished because of the
simultaneous developments in the field of computer
science. Since then computer technology and cost
have changed rapidly. It is now possible 1o buy cheap
powerful systems that can support very sophisticated
graphics and massive mathematical computations.
Problems that previously were utterly intractable are
now solved routinely,

Also contributing to the rapid growth of the FEM
from the late 1960s onwards was the realization that
it could be applied to problems other than those of
solid and structural mechanics, The method was seen
as applicable 1o all field problems that can be cast in
a variational form. Consequently, finite clements are
also used to analyze problems of fluid mechanics,
aerodynamics,  electromagnetic theory,  metal
forming, soil mechanics, heat transfer, and so on.

2 THE FINITE ELEMENT METHOD
(FEM)

Modern finite element theory had its recognizable
beginnings in the displacement (or stiffness) method
of structural analysis. Initial work on finite elements
(FE} was based on a combination of elementary
theory plus intuitive reasoning. It was later shown
that this early work could be developed from the
varsational principles of clasticity, and also from
‘weighted residuals’ technigues [2].

The underlying idea of the method consists of sub-
dividing the structure being analyzed into a discrete
number of sub-regions of finite dimensions. and of
locally applying, under certain conditions. an
approximate solution. The observation that an
integral of a measurable function over an arbitrary
domain can be broken into the sum integrals over an
arbitrary collection of almost disjointed sub-domains,
whose union is the original domain, is a vital one.
The problem is greatly simplified in the sense that,
over each finite element, it is possible to adopt simple
functions (shape functions) to represent the local
behaviour of that element, An analysis of a problem
can be made locally, over a typical sub-domain, and
by making the sub-domain sufficiently small it can be
argued that polynomial functions of various degrees
are adequate for representing the local behaviour of
the solution. The true solution, however, may be
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pepresented by 2 series of partial  differential
cauatinns whose solution may not be that apparent.

FEM. therefore, offers a unifying approach 1o the
solution of diverse engincering problems, so that it is
considered as a general numerical techmigue for the
colution of systems of partial differential equations
subject 1o appropriate boundary  and  initial
conditons, The Rayleigh-Ritz method [3]{one of the
availale FE formulation methods), for example,
consists in secking a function ¢ that minimizes
integrals of the form

= [ Flx, uix), uix)]dx 4y

where u, denotes the first derivative of u with respect
w x. A trial function must he selected so that it
calisfies  the displacement  boundary  conditions
prescribed for the problem itself. The task is to seck
an approximate solution in the form ofa finite series

bsy ™ EL'|'-:'|. 1."rj 1,2,....N "2-:'

in which the parameters ¢ are determined by
minimizing the functional 1. and g; are a suitable
complete set of linearly independent basis functions
(approximation functions). N is determined by the
number of degrees of freedom (DOF) associated with
e element. Afier substituting w, from Eqq2) foru n
Fgdl) and integrating, the functional 1 becomes an
ordinary function of the parameters <, €z ... Cn.
Then the necessary condition for the minimization of
l[€) €30 .. Cx) i5 that its partial derivatives with
respect o each of the parameters is zero:

Aide, =08 8 =0, .81 0w = o (»
Thus, there are M linear algebraic equations in N
unknowns, ¢ (3 = 1. 2. ..., N). These equations can be
written in the form

ku =T CY

where k is the elemem stiffness matrix of size N by
N, u represents a vector of nodal displacements for
the element { M by 1), and f is a vector of nodal
forces [ M by 1 ). Equations of this type are derived
fur each element in a mesh, and are later assembled
and appropriately manipulated to form the K matrix,
U and F vectors for the entire structure. The sizes of
K, U and F are determined by the number of DOF of
the structure, In most physical problems the DOF arc
usually in the thousands, The solution af these
equations vields U, the nodal displacements of the
structure, Straims and stresses are computed from the
nodal displacements of each element, which are
extracted from U. The degree of approximation that
can be reached is dependent on the number of
clements in the mesh and on their type. The finer the
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mesh and the higher the degree of shape functions,
the better will be the numerical solution obtained.
However, the computation time needed will also
increase, eventually to undesirable proportions.

3 WHY FINITE ELEMENTS

Several properties of the finite element method have
contributed to its extensive use in all fields of
engineering and physics. The maost distinctive feature
of the method that separates it from others is the
division of any given domain, regularly or irregularly
shaped, into a set of sub-domains. Irregularly shaped
boundaries can he approximated by using elements
with straight sides or matched almost exactly with
curved elements, A few examples of some commaonly
used elements are shown in Fig.l. The size of the
glements can also be varied, thus allowing the
element grid to be expanded or refined as the need
arises, see Fig2 Properties of adjacent elements of
the boundary do net have to be the same, which
allows the method to be applied to bodies composed
of several materials,
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ia) {b) (e}
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Fig.1 : Straight-edge (a, b, ¢} and curved (d, )
elements. (a) linear bar clement, (h) linear iriangle,
(e} bilinear quadrilateral, (d) quadratic bar element,
and (e} quadratic quadrilateral element,

\

(a) (b)

Fig.2 (a, b): Transitions from coarse to finer mesh
that avoid abrupt size changes.

The success of the method is largely due fo the ease
with which the analysis of a class of problems,
without regard to a specific problem, can he
ingorporated into  computer programs. The steps
involved in the analysis of a general class of
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problems arc systematic, which makes them readily
implementable on a digital computer.

4 MODELING CONSIDERATIONS

A good choice of elements can save computational
cost while giving accurate results, The size of
elements in a mesh depends on the problem to be
solved and on the accuracy desired. A balance must
be reached between the accuracy of the solution and
the esmputational time. In any given problem, one
might begin with a finite element mesh that is
believed, based on experience and engineering
Judgment, to be adequate to solve the problem. Then
as a second choice, one selects a mesh that consisis
of a large number of smaller elements to solve the
problem once again. If there is a significam
difference between the two solutions, one sees the
benefit of mesh refinement, and further refinement
may be warranted uniil the difference is negligibly
small. In a case where the computational costs are the
prime concern, the analyst must use one's own
judgment concerning what is reasonably a good
mesh.

Particular attention must be paid to regions of stress
concentration, such as areas around holes and regions
of load application, and also at areas where there are
high rates of change of siress. Smallest elements are
usually placed at such regions to track these with
reasonable accuracy. When moving from areas of
high element-density to low density areas, the
elemnents should be graded in size, as shown in Fig.2,
so that, ideally, the sirain energy content of each is of
the same order.

The shape of the elements should be as regular as
possible, that is, triangles as near equilateral as
possible and quadrilaterals as near square as possible.
Elements with large aspect ratio (the ratio of the
shortest side 1o the longest side of the element)
should be avoided because such elements can cause
ill-conditioning of the coefficient matrices, Fig.3
gives examples of elements with undesirable shapes.

The order of an element, eg. linear, quadratic or
cubic, should be chosen so as to get results of
greatest accuracy while keeping computational cost
reasongbly low. A high-order element should be
avoided in regions where a low-order element can
vield acceplable resulis. Moreover, combining
elements of different order should generally be
avoided since it violates continuity along element
imterface, as shown in Figd. On the other hand,
combining elements of different types, eg
connecting plate bending elements to beam elements,
and connecting elements of different shapes like
triangles and quadrilaterals, naturally arises in
structural problems. Where practical, it is advisable
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to use elements that have the same number of degrees
of freedom at the connecting node.

Large aspect Mear triangle Off-center
ratio, a == h a»>b node
B (v}
a = b
Highly skewed Triangular Curved
Cuadrilateral side

Fig.3: Elements having shape distortions that tend
1o promaote poor resulls,

L ]
1]

(a) (b) *

Figd: Poor element connections; (a) two bilinear
elements and one gquadratic elemem, (b) two
quadratic elements, (¢} two quadratic elements
connected at A and B but not at C {as if to model a
crack from B 1o C).

] PROCESSING OF FEM DATA

The finite element computer program essentially
consists of three basic parts: Pre-processor, Processor
and Post-processor. The pre-processor part of the
program consists of discretization of the structure,
whereby the structure being analyzed is idealized as
an assemblage of a number, often a large number, of
discrete elements connected at the nodes. During this
process the analyst decides on the number, shape,
size and topology of the elements with the purpose of
simulating the structure as closely as poscible, The
discretization process is essentially a task that
requires engineering judgment and experience. The
type of element chosen, for example, will depend on
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the type of structure and the expected pattern of
deformation, or the desired accuracy of the results.

The remaining parls, processor and posi-processor,
are automatically processed by the computer. In the
processor part, most of the steps in the finite element
method  are  performed.  Several subroutines are
employed  to perform different  tasks.  These
cubroutines  typically  involve;  selection of
displacement function and, numerical evaluations of
the element matrices (the mass matrix, stiffness
matrix, and the element force vector) from  the
clement geometric and elastic properties. Oither
subroutines will invelve the assembly of the overall
<iffness matrix from individual stiffness matrices,
and the modification of the stiffness matrix 1o take
account of the boundary conditions. The resulting
cquilibrium equations are then solved to vield the
nodal displacements of the  elements. There are
several procedures for solving these equations, such

as;  Gaussian  elimination, LU {Upper-Lower)
Jdecomposition, Gauss-Seidel  iteration, gradient
techniques, etc.

Post-processing involves computation and display of
the clement resultants such as swesses and sirains,
and any other quantities associated with the element
that are of importance. Much of the output can be
represented  graphically in a form more easily
interpreted by the analyst, rather than analytically
examining and comparing huge amounts of data,
Displacements can be shown by amplifying and
superimpasing the deformed shape on the original
structure. Stress levels can be easily shown on graphs
of ‘stress plotted against element number’, of on
conlour plots displaying values of stress as colourad
regions on the exterior surface of a model.

L] A PRACTICAL EXAMPLE
6.1 Problem Definition

FEM was used to investigate the response of a
pedestrian bridge structure Lo both static and dynamic
loads. The bridge, called The Merchants Bridge and
located in Manchester, UK., was designed by
Whithy and Bird Consulting Engineers. The plan and
clevation of the bridge are shown in Fig.5. The
bridge’s principal features are a sickle arch and a
curved aerofoil box deck. The arch is tied by the
deck, where the tie i not siraight but curved in plan
{Fig_ 5(h)), thus creating a crescent shape. The arch is
inclined outwards, as can be seen from Fig.6, and
curves in the opposite direction to that of the deck.
The deck, with its top and botom steel plates and
steel tubes on the edges, is a closed worsion box. Fig.7
shows the cross-section of the deck. Some steel plates
have been used as transverse deck-stiffeners, while
imiversal Toeeetinns. welded onto the inside of
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selected top and bottom deck plates, stiffen the deck
in the longitudinal direction. The support arch and
the deck are connecied to each other by means of
tapered steel I-beams welded at both ends.

The structural behaviour of the bridge relies on a
number of separate but interrelated actions. The
hangers are fabricated from tapered steel I-sections,
as opposed to the conventional steel cables because
of the faet that, instead of transmitting loads
primarily by tensile action, they serve many other
equally important structural purposes. Acting as
cantilevers anchored to the torsionally stff deck,
these tapered hangers, because of their bending
stiffness, help to restrain the out-of-plane buckling of
the arch. The hangers also help to transfer force into
the planc of the arch by bending action, and this
bending of the hangers is resisted by the torsional
rigidity of the deck. The arch and the deck react to,
and counterbalance, each other. Because of the non-
uniform width of the deck, the variation of torsion
along the deck is non-uniform. The transverse
diaphragm stiffeners  inside the deck reduce the
pffects of warping and shear forces caused by the
non-uniform torsion in the deck.

6.2  Finite Element Models

Considering the brief account of the bridge’s
behaviour, given above, it is quite apparent that it
would be very difficult, if not impossible, to predict
the siress levels on different parts of the bridge using
any of the raditional methods of structural analysis.
A three-dimensional, linear elastic finite element
analysis of the bridge was performed using a
commereial program called ABAQUS, version 5.4,
developed in the U.S.A. by Hibbitt, Karlsson and
Sorensen. lis companion pre-processing software
called PATRAMN was used for data preparation.

Two different models of the bridge were built and
analyzed. The models differed in the type of elements
used 1o build the bridge. The first model employed
simple linear elements such as two-noded  bar
elements and four-noded quadrilateral elements. The
second model employed quadratic elements, whether
straight-edged or curved. The types and behavior of
these elements are described below,

In model 1 the curved shape of the arch was modeled
as a sequence of short straight segments rigidly
connected at the ends. Two-noded, linear pipe, beam
elements, referred to as PIPE3] in ABAQUS, were
used. A PIPE3] element is a one-dimensional line
element in space that has a stiffness associated with
the deformations of the line (the beam's axis). These
deformations censist of axial streich, bending and
torsion. Each hanger was modeled as a serics of four
short segments of varying cross sectional properties.
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Each segment was a uniform, two-node bar element
with “I" cross section, and assigned properties of
‘beams in space’ of type B31 in ABAQUS. All of the
deck components and the plate stiffeners were
modeled with 2-dimensional, thin shell quadrilateral
elements, ABAQUS type S4RS. This meant that the
curved circular tubes had to be modeled as six-sided
prisms, made of rectangular flat-surface elements as
shown in Fig.8. This model comprised a total of 1220
clements and 927 active nodes, representing more
than 4000 degrees of freedom.

The elements in model 2 were selected with the aim
to improve the accuracy of the results by simulating
the real structure as closely as possible. In order to
achieve this goal, the use of more complicated
elements was inevitable. However, the drawback in
using such elements was very well understood, and a
balance between accuracy and cost had to be reached.
After a few tests, quadratic elements were found
suitable to yield acceptable results within a
reasonable time.

The arch rib in model 2 was modeled with three-
noded quadratic beam elements in space, ABAQUS
type B32. These clements were able to give the arch
a curved profile which could not be obtained from
two-noded beam elements which were selected for
the first model. B32 elements use quadratic
interpolating  polynomials and were, therefore,
expected (o give more accurate results as compared
to two-noded clements. The penalty in using these
elements was the increase in computational time (and
therefore higher costs) resulting from the higher
number of degrees of freedom of the system. The top
and bottom deck plates, and the plate stiffeners, were
modeled with eight-noded, doubly curved thin-shell
elements, referred to as S8R5 in ABAQUS. The shell
elements in ABAQUS provide full three dimensional
analysis capabilities, with three translational and
three rotational degrees of freedom at each node.
Their formulation accounts for bending, transverse
deformation, membrane stretching and shear, but
ignores transverse shear deformation [7). Like in the
case of the arch, these quadratic elements were
expected to predict stress levels with better accuracy
than the linear clements used in the first model. The
deck-tubes were also modeled with eight-noded
doubly curved thin-shell elements, SSRS. These
elements, because of their mid-side nodes, were able
to give the curvature required to describe the shape of
the tubes, as shown in Fig.9. The hangers were
assigned properties of ‘beams-in-space’, type B31l in
ABAQUS. In total, this model comprised 1333
clements and 3067 active nodes. representing more
than 15000 degrees of freedom,

Relevant geometric and material properties were
assigned to each element. And finally, the boundary
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conditions were imposed at the appropriate notes to
represent the support conditions in the real structure.

6.3  Results of the Work

The FE analyses gave an insight into the stress
distribution on the bridge components and identified
critical regions. Static analysis showed that wide
ranges of torsion and shear stresses develop in certain
components of the bridge. A pattern of the von Mises
stresses on the surfaces of the elements (when the
bridge was loaded with the most critical live load)
was produced [4]. The figure of von Mises stresses
cannot be shown here because it relies on different
colours to display stress levels. Values of deflections
of different points of the bridge were also obtained.
Fig.10 shows the displaced bridge structure
superimposed onto the original structure. The
original and displaced structures were shown in
different colours though it is not the case in Fig.10
because colour is not available here. From the
dynamic analysis of the model, the lowest ten
predicted values of resonant frequencies and the
corresponding  displacement  mode shapes  were
obtained, these are shown in Fig.11[(a) to (i))- Again,
the original and displaced structures were shown in
different colours for clarity. As can be seen from the
figures, the analysis suggested the possibility of
several different modes of resonant vibration of the
bridge, most of which involved vertical movement of
the deck. Torsion of the deck and lateral vibration of
the arch were suggested by higher modes of
vibration, modes 6 and 7 respectively. The highest
mades, that is, modes 8, 9 and 10, suggested some
localized plate vibrations in the deck elements,

6.4  Comparison of the Models

Table | shows the values of maximum deflections
obtained in the analysis of the two models. It is
apparent from this table that the values obtained from
model 1 were lower than those obtained from model
2. Table 2 shows the maximum values of element
stresses for both models. Similarly, this table gives
larger values of stress levels in model 2 than in model
1. However, the critical values of both deflections
and stresses occurred at corresponding points of the
bridge, which suggested that the overall behavior of
the bridge was consistent,

The differences in the values obtained were attributed
to the differences in the clements used to build the
two models. While both models were built with
elements of similar shapes, their orders were
different. Model 1 was built with linear elements
while model 2 was built with quadratic elements, The
linear  elements incorporated in  model 1
underestimated both the deflections and stresses.
While it is not easy to ascertain which model gives
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the more accurate results, it would be safer to base
Jesign on the more critical values. In general, high-
srder elements approximate the deformations and
glement resultants with better accuracy than the
|ower-order elements because of more variables in
their interpolating polynomials.

consequently, the capacity to select the right
elements for the right problem cannot be more
emphasized. In this problem, only the order of the
elements was varicd. Elements of other shapes, e.g.
triangles, could have been incorporated.

T CONCLUSION

A brief description of the finite element method and
modeling guidelines regarding choice of elements
were given. Advantages of the method as a major
wol of analysis and design in complex structural
systems have been presented. A practical example
was employed to illustrate the ease of using FEM
programs to carry out stress and modal analyses of
strusctures in practice. The example has demonstrated
that the FEM is effective in identifying critical
regions in structures, and in giving insight into the
stress distribution over the entire structure, The
importance of selecting the most suitable elements
for the given problem was also demonstrated by the
example. The FEM was also efficient in predicting
the mode shapes and their resonant frequencies. All
these analyses were carried out in a relatively shor
period of time, and at very low cost.

8 RECOMMENDATIONS

The rapid development of computer hardware and the
widespread use of commercial finite element analysis
software have greatly increased the expectation of
engineers worldwide to solve large-scale structural
analysis problems and, hence, to ascerizin optimal
design. Tt is recommended here, therefore, that all
practicing structural engineers should leam the
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fundamentals of this method. Botswana Institution of
Engineers, the University of Botswana's Faculty of
Engineering, and companics that sell  relevant
engineering software, should arrange seminars and
workshops aimed at training practicing engineers in
this powerful method of analysis and design. It is
vital that the analyst has a clear understanding of the
method before attempting to use it to solve
engineering problems. It is also important, however,
that engineers are familiar with alternative methods
of analysis and should be able to use them to predict
the behavior of structures.
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2

Fig.6 : Side elevation of the Merchants Bridge showing curvatures of the Arch and the Deck.

Elements |Normal Stress | Shear Stress | Torsion
Mod I Mod 2 1od | Mod 2 Mod | Mod 2
Steel plates (thickness = 12 mm) Deck 108 (196 [3) 91 500 [1830
\ Hangers [ 186 |204
Arch 95 99 17 9

Table 2: Maximum Element Stresses (N/mm’),
Torsion in units of kNm.

Steel tube
(outside dia. = 193 mm, Axes | Model || Model 2
insde dia. = 177 mm) Ul 2.8 3.0
steel tube (outside dia. = 406 mm, U2 25 3l
inside dia. = 386 mm). U3 21 30 _‘

Fig.7 : Cross-section of the Merchants Bridge deck. Table 1: Maximum Nodal Deflections (cm)

**See Fig 3 for orientation of the aves.
LEnN
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Fig.9" Part of the deck showing element shapes in model 2

Fig.10(a) l,Ollgl'lu(l'uI:II view of the Bridge showing the deflected shape (due to working loads)
superimposed onto the original structure

Fig.10(b)" Side view of the Bridge showing the deflected structure superimposed onto the original one.
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Fig-11{a) to (J): Mode shapes and the comresponding resonant frequencies



