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Two-dimensional fMlow of an incompressible viscous fTuid poit an infinite, porous plare in o porous medium is
considered for the umﬂuum‘ﬁﬂgﬁﬂnﬂngmdmm:ﬂjmmmwmﬂtmili.-‘ﬂ-l'l-l'l'llﬂ'\l'.
{2} the free stremm velocity excillates in Gime obow! o corifant mem, (3) the femperature of the plate is kept corstand,
{4} the différence between the lemperature of the plae and the free stream is considerably large cousing the free
comvection curremts.  Approximate solutions for the coupled non-linear equations are cbiained for velocly and
temperature,  Expressions for the mean welocity, mean temperature ond the mean skin friction are derived  The
efferts of the Grashof mumber G, the Prandd! mumber P, the Eckeri number E and the Darcy number o, on the mean
miatlan of air and water are sindied It ix found that the mean velocity, for air, increases dive o more cooling (G = 0)
of the plate by the free comvection currents, for any value of o when E is constant. In the presence of heated (G < 0}
plate, the mean velooly [s nepative for o= 0 near the boundary laver and ax o increases the mean velocity gradially
decreaves in magnitcde and becomes positive with further increase ln o Hearlng and cooling have separate gffects on
tie mean velocity for fTuids for any value of o with lorge Prandd! nicmbers.  Tn the case of heatimg of the plate, the
miean velocity increases whereay in the cate of cooling of the plate, the mean velocify decreases with increasing

Pranddl aumber.
I. INTRODUCTION

From the technological point of view oscillatory flow is
always important, for it has many practical
applications. Such a study was initiated by Lighthill [1]
who swdied & two-dimensional flow of an
incompressible viscous fluid. By assuming that a
regular fluctuating flow is superimposed on the mean
steady boundary-layer flow, he solved the problem by
the momentum method, Stuart [2] extended this idea to
study a two-dimensional flow past an infinite porows
plate when the free stream oscillates in-time about a
constant mean, where he assumed that there is no heat
transfer between the plate and the fluid in deriving the
temperature field, which is only one of the possible
cases of physical sitwation.  Soundalpekar [3.4]
discussed the other case of physical sineation, than is,
when the difference between the plate temperature and
the free stream enyperature is apparently large so as to
cause the free convection currents to the flow in the
boundary laver and the free siream velocity is also
pscillating in time abouwt a constant mean in the
direction of the flow, then how 15 the flow field near a
porous infinite, vertical plate with constant suction
affected by the free convection currents? He assumed
that (1) the plate temperature oscillates in time about a
constant mean, (2) the free convective currents are
present in the boundary laver and (3) the flow is very
slow and hemce viscous dissipative effects are
negligible.  After having solved the problem, he
observed that the temperamure field was not at all
affected by the free convective currents, which is not
always true since in the case of fluids with high Prandt]
number, viscous dissipative heat is alwayvs present even

in slow motion. This led him to study the effects of
free convection currents on the oscillatory type of
boundary layer flow past an infinite vertical plate with
constant suction and the plate emperature differing
from the free stream temperature. He also studied the
effects of heating or cooling of the plate and those of
greater viscous dissipative heat.

In the present paper, the author has made an attempt to
seek the influence of the Darcy number o on these
oscillatory types of boundary layer flows in porous
medium.

The work is done by mathematical analysis that is
presented under suitable assumptions for the mean
velocity, mean temperature and the mean shearing
siress.

2, MATHEMATICAL FORMULATION

A two-dimensional, unsteady  flow of an
incompressible, viscous fluid past an infinite, porous
plate with constant suction in a porous medium is
considered. The x - axis is taken along the vertical,
infinite plate, in vertical direction, which is the
direction of flow and z - axis is taken normal to the
plate. The governing equations are
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where u' and w' are components of velocity in »" and 2’
directions respectively, p’ the density of the fluid in the
boundary layer, g the acceleration due to gravity, p'
the pressure, w the coefficient of viscosity, x the
permeability of the medium, C. the specific heat at
constant pressure, T' the temperature of the fluid and K
the thermal conductivity, The boundary conditions are

wW=0, T'=T az=0

W=U(i"), T':}'; s —m (5)
where T is the temperature of the plate, T the
temperamure of the fluid in the free stream and U the
free stream velocity. In the free stream, from (1), we
et
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where o, is the density of the fluid in the free stream.

Eliminating —% from (1) and (6), and using the

eguation of state
g.(p.-p)=gp0(T"-T,) )
where [i is the coefficient of volume expansion, we get
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where |-r=E is the Kinematic viscosity. Assuming

i
constant suction velocity W, at the plate, equation (3)
integrates to

w'=—w, {9)

where the negative sign indicates that the suction
velocity is towards the plate.

In view of (9, (8) and (4) now reduce to
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where [ is the mean of L7'(#),
(10} and (11) become
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The comesponding boundary conditions are
wu=0 8=1a z=0
u=U(r), =0 sz o x (15

For temperature & to be zero far away from the plate,
we drop the term PEeau” . Otherwise the temperature
A becomes infinite as  — = which is physically
impossible, In the neighbourhood of the plate, we now
assume

u(z.t)=u,(2)+ &' u(z),

Az t)= 6, (2)+ & 8,(2)

and for the stream,

wz ) =1+ " (16)

where £ i3 a small constant quantity = 1 and
dver'
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a
frequency of the free stream oscillations. Substituting
{16) in (13) and (14) and equating the harmonic terms,

neglecting the coefficients of £, we get

=

{dimensionless frequency) wherein o is the

u, +u, -0 (u,-1)=-G8, a7
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g+ P8 = -PEM: (19
g, + PG, - % PB, = -2PEuu (20)

where the primes denote differentiation with respect to
2. The corresponding boundary conditions are

M“:ﬂ, leﬂ, I!;u=|, ﬂ:ﬂ atz=0

u, =1 u=1, 8,=0, =0 asz—sw
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To solve the coupled non-linear equations (17) to (200,
we now assume that the heat due to viscous dissipation
is superimposed on the motion.  Mathematically this
can be achieved by expanding the welocity and
temperature terms in powers of E. In the case of
incomprassible fluids, E is always very small. We now
ASSUME

u,(2) = u,,(2) + Eu,y (2) + O(E?),

w(2) = 1, (2)+ Eu,(2)+ O(E)

B,(2) = 6,,(z) + EO,(2)+ O(E”),

6, (z)=8,(z)+ EB,(2)+ O(E*) (22)

Substituting (22 in (17) 10 (21), equating fo zero the
coelTicients of different powers of E and neglecting the
terms of (N E’), we obtain the following set of
equations:

u, +u,—olu,-1)=-G@, (23)
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6,=0, 6,=0 az=0
6,=0, 6,=0 sz (34)

In this Part I, only the mean flow is described. The
cquations (23) and (24), (26) and (27) have been solved
using the boundary conditions (25) and (28) and
discussed the mean flow only in this Part I, The
remaining equations for the unsteady flow are discussed
and are solved in Part Il. The solutions for the mean
flow are

u,(z) =1+(a, -e™ —ae ™ + EPGf(z)

(35)
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The mean velocity is shown in Figures | to 4 and the
mean temperature is shown in Figures 5 and 6, for
different values of G, E, P and o. In order to be more
realistic, the values of the Prandt] number are chosen as
0.71 and 7 approximately, which represent air and
water respectively at 20°C. The other values of P are
chosen arbitrarily. The mean shear stress is obtained as
follows:

- T dy, @
UMy dz ).,

Hence from (35) and (37), we get

r=A+a(P-2)+ EPGf'(0) (38)
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3. DISCUSSION

The mean velocity for air in the presence of cooled (G
> 0) and heated (G < 0) plates is represented in Figs. |
and 2. From Fig. 1, we find that for any value of o
when E is constant, the mean velocity for air increases
due to more cooling of the plate by the free convection



currents. From Table 1, we see that when G is doubled,
for o =0 there 15 an increase of 115% in the maximum
velocity, whereas for @ = 10 the increase in the
maximum velocity is only 2.5%. Similarly, when the
value of E is doubled, there iz an increase of 5% in the
maximum velocity for o = 0, while for o =10 ihe
increment is only 0.01%. From Fig. 2, we observe that
near the boundary layer the mean velocity for air in the
presence of heated plate is negative for o = 0. As o

increases, this pradually decreases in magnitude and
becomes positive with further increase in &, Away from
the boundary layer, the mean velocity increases as o
increases. From Table 2, we observe that when the
value of G is doubled, there is 66% decrease in the
maximum velocity for o = 0 whereas for o = 10 the
decrement is only 2.5% and when the value of E is
doubled, the increase in the maximum velocity varies
from 10% to 0.002% as o varies from 0 to 10.
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Fig. 1 Mean velocity for airwhen G = 0

Table | - Percentage increase in
the maximum velocily
when the plate is conled

Table 2 - Percentage increase (or
decrease) in the maximum
velocity when the plate is

for air

When G is When E is
a doubled doubled

{increase) (increase)
0 115.0 5.00
= 8.9 0.03
10 25 0.01

heated for air

When G is When E is
a doubled doubled

(decrease) (increase)
0 a6.0 10,000
5 11.0 0.020
10 2.3 0,002
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Fig. 2 Mean velocity for air when G < 0
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Fig. 3(a) Mean velocity for fluids with increasing Prandtl number when G > 0
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Fig. 3(b) Mean velocity for fluids with increasing Prandtl number when G > 0 with more addition of heat
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Fig. 4 Mean velocity for fluids with increasing Prandtl number when G <0



The mean velocity for fluids with increasing Prandtl
numbers in the case of cooling and heating of the plate
for different values of o is represented in Figs. 3 and 4
respectively. From Fig. 3(a), we find that the mean
velocity profiles are positive in the case of cooling of
the plate. With more cooling of the plate (1,3,2,4) the
mean velocity increases, From Fig. 3(b), we observe
that with more addition of heat due to viscous
dissipation, the mean velocity also increases (1,3,2,4),

From Fig. 4, we observe that the mean velocity profile
is of separated type in the case of fluids with small
Prandtl number, namely, P = 3. For fluids with large
Prandtl numbers, for any value of o, the mean velocity
decreases (2,5) with more heating of the plate. But
when the value of G doubled, the percentage decrease
in the maximum velocity decreases as o increases,
When the value of E is doubled there is a percentage
increase in the maximum velocity, which decreases as
o increases from 0 to 10. The mean velocity increases
with increasing Prandtl numbers (1,2 and 4,5) in case
of heating of the plate,

From numerical calculations, it is found that with
addition of heat due to viscous dissipation, for any
value of o the mean temperature for air increases
immespective of the absence or the presence of free
convection currents. Due to greater cooling of the plate,
for air, the mean temperature in the boundary layer
increases with increasing o. For air, the effect of
increasing o is to decrease the mean temperature when
the plate is cooled.

The mean temperature in the case of liquids with
increasing Prandtl numbers for different values of o is
shown in Fig. 5. From this figure, we find that the mean
temperature decreases as the Prandtl number increases.
For any value of o, the mean temperature of water at
20°C (P = 7) decreases owing to greater cooling of the
plate. For fluids with low Prandtl numbers and o = 0,
the decrease in temperature is more significant than that
with high Prandtl numbers and & > 0. For fluids, the
effect of increasing o is to increase the mean
temperature when the plate is cooled.
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Fig. 5 Mean temperature for fluids when G = 0 and E ~ 0.01
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Fig. 6 Mean temperature for fluids when G <0

The mean temperature in the case of heating of the
plate for different values of o is shown in Fig. 6. From
this figure, we observe that in the case of water the
mean temperature decreases, owing to greater heating
of the plate. For fluids, with more addition of heat due
to viscous dissipation, the mean temperature decreases.
In the case of heating of the plate the mean temperature
decreases with increasing Prandtl numbers for any
value of .

From the numerical calculations. it is found that for any
value of o, for both air and liquids, there is an increase
in the mean shearing stress owing to greater cooling of
the plate, whereas owing to greater heating of the plate
there is a decrease in the mean shearing stress.

The percentage increase (or decrease) in the mean
shearing stress when the plate is cooled/heated is shown

Table 3 - Percentage increase in
the mean shearing stress
when the plate is cooled

When G is doubled
o
for air for water
0 117.0 41.0
5 15.0 7.5
10 4.5 3.0

in Table 3/Table 4. From these tables, we observe that
when the value of G is doubled (with greater cooling of
the plate), the effect of increasing o is to decrease the
mean shearing stress from 117% and 41% to 4.5% and
3% in case of air and water respectively. In the
presence of heated plate, when the value of G is
doubled, the effect of increasing o is to decrease the
mean shearing stress from 72% and 230% to 16% and
3% in case of air and water respectively. With an
increase in the Prandtl number the mean shearing
stress, for any value of o, decreases for G > 0 and
increases for G < 0. Also with more addition of heat
due to viscous dissipation, the mean shearing stress
increases with increasing o. in case of both cooling and
heating of the plate.

Table 4 - Percentage decrease in

the mean shearing stress

when the plate is heated
When G is doubled

o

for air for water
0 T2 230
5 21 9

10 16 3




4. CONCLUSIONS

Near the boundary layer, the mean velocity for air is
negative in the presence of heated plate and positive in
the case of cooled plate. Away from the boundary
layer, the mean velocity increases as o increases. The
mean velocity for air increases with more cooling of the
plate. Heating and cooling have separate effects on the
mean velocity profiles of fluids with large Prandtl
numbers irrespective of the value of o. In the case of
heating of the plate the mean velocity increases,
whereas in the case of cooling of the plate the mean
velocity decreases with increasing Prandtl numbers.
The percentage increase (or decrease) in the maximum
velocity for air is considerably more in the absence of o
and less in the presence of o when the plate is cooled or
heated. It decreases as o increases.

The mean temperature for air increases with addition of
heat due to viscous dissipation irrespective of the
presence or absence of the free convection currents and
it decreases as the Prandtl number increases. For
fluids, with more addition of heat, the mean
temperature decreases.

Irrespective of the value of o, the mean shearing stress
increases owing to greater cooling of the plate whereas
it decreases owing to greater heating of the plate. With
more addition of heat, the mean shearing stress
increases with increasing o in the case of both cooling
and heating of the plate,
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