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Abstract

The Okwa Basement Complex crops out at the northwestern edge of the Kaapvaal craton within the Okwa Inlier, an isolated expo-
sure of Precambrian basement in the Kalahan Desert. Mew U-Pb zircon dating was performed on all the major Palacoproterozoic lithol-
ogies of the complex. Results are 2035.3 +1.3 Ma for augen gneiss, 2036.3 + 1.3 Ma for foliated monzogranite and 2057 + 2 Ma for
microgranile. A meta-thyolite gives an age of 2055 =4 Ma, based on one concordant zircon, and contains an inherited zircon with
an age of 2101 + 4 Ma. All precisely dated rocks are indistinguishable in age at 2056 + 2 Ma. This age can be broadly correlated with
Palaeoproterozoic geologic events in the Magondi belt at the northwest margin of the Zimbabwe craton and the Triangle Shear Zone in
the Limpopo belt. However, the most precise correlation is with the Bushveld Complex, whose age is indistinguishable from that of the
Okwa Basement Complex. This suggests a link between margnal and intra-cratonic Bushveld-age magmatism on the Kaapvaal craton.

© 2006 Elsevier Led. All rights reserved.
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1. Introduction

Major Proterozoic belts bound the northwestern margin
of the Archaean Kaapvaal-Limpopo-Zimbabwe craton in
Botswana. They are largely concealed beneath a cover of
Phanerozoic sediments (Karoo Supergroup and Kalahari
Group) but their continuity can be inferred by combining
geophysical information, borehole data and available out-
crops (Fig. 1). Correlation of Proterozoic units in Bots-
wana with orogenic systems in neighbouring countries is
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generally hampered by the paucity of modern geochrono-
logical work that relates isotopic ages to tectono-magmatic
events. In this paper we report new precise U-Pb dates of
zircons from the Okwa Basement Complex in western
Botswana and discuss the regional implications of these
data for the Palaeoproterozoic Eburnean crustal evolution
of southem Africa.

2. Geological setting

The Palaeoproterozoic Okwa Inlier (Fig. 2) is situated in
western Botswana. It is bounded by the Archaean Kaap-
vaal craton (Moore et al., 1993; Kamo et al., 1995) to the
southeast and is unconformably overlain by sedimentary
rocks of the Neoproterozoic Ghanzi-Chobe belt to the
northwest (Fig. 3; Schwartz et al., 1996; Modie, 1996).
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Fig. 1. The tectonic framework of southern Africa showing the main Archaean terrains and inferred subsurface extents of Proterozoic belts. O: Okwa

Inlier; Q: Quangwadum valley; K: Kubu Island; G: Gweta Complex; KhB: Kheis Belt; NaqB: Namaqua belt; KaB: Kaoko belt; DB: Damara Belt, CKB:
Choma-Kalomo block:; ZB: Zambezi belt; MB: Magondi belt; MG: Mahalapye Granite: LB: Limpopo belt; NB: Natal belt; Kmj: Kamanjab Inlier; Rhd:
Richtersveld province (modified from Singletary et al., 2003; Rainaud et al., 2005).

The exposures in the Okwa valley have been described
by Crockett and Jennings (1965), Bossum and Ludtke
(1980), Key and Rundle (1981), Aldiss (1988), Aldiss and
Carney (1992) and Ramokate (1998). The Okwa Basement
Complex experienced several episodes of folding, thrusting
and brittle faulting, which are thought to range from Mes-
oproterozoic (Kibaran) to Karoo in age.

The first attempt to date the rocks in the Okwa valley
established its Palaeoproterozoic age and enabled a corre-
lation with the Kheis Belt 200 km to the South (Mallick
et al., 1981) and with other Ebumean crustal provinces in
southern Africa (Key and Rundle, 1981; Stowe et al,
1984; Hartnady et al., 1985). Despite this broad scale cor-
relation, the protolith age of the Okwa Basement Complex
is highly debated. Whole-rock Rb-Sr errorchrons of gneis-
sic rocks and microgranite yielded ages of 1813 + 68 Ma
(378r/%8r, = (0.7227, MSWD=24) and 1004 +49 Ma
(578r/%8r, = 0.7217, MSWD = 7.5), respectively (Key and

Rundle, 1981). K-Ar isotope determinations on separated
biotites indicated ages between 1156 +28 Ma and
1093 + 36 Ma, while two samples of homblende from
enclaves in augen gneiss gave K-Ar dates of
1971 + 31 Ma and 1193 4 35 Ma. All authors agree that
the Mesoproterozoic Rb—Sr and K—Ar dates mark an iso-
topic resetting of both isotopic systems during a younger
event. Key and Rundle (1981) suggested that the igneous
protolith of the Okwa Basement Complex is about
1831 Ma old, whereas Aldiss and Carney (1992) consider
that this is the age of a local Palaeoproterozoic tectono-
metamorphic event. The older date of 1971 + 31 Ma
quoted above was interpreted to be the age of the protolith
of this basement. The enclaves in the Okwa augen gneiss
were reported to be xenoliths (Key and Rundle, 1981) or
dykes (Aldiss and Camey, 1992). New investigations indi-
cate that the augen gneiss contains both micaceous restites
and mafic microgranular enclaves. The mafic enclaves are
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Fig. 2. Geological map of northwestern Botswana showing the location of the Okwa Basement Complex and various other important geological
formations. Inset: Posiion of the main map in Botswana.
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Fig. 3. Geological map of Ghanzi-Makunda area showing the location of the Okwa Basement Complex (Ramokate et al., 2000). This map combines both
the surface and subcrop extent of the Okwa Basement Complex. Inset: Position of the main map in Botswana.

interpreted to represent mixing between mafic and felsic (1) Feldspar-phyric meta-rhyolite represents the oldest
magmas (e.g., Didier and Barbarin, 1991). unit in the area (Aldiss and Carney, 1992; Ramokate,
The Okwa Basement Complex (Fig. 4) consists of four 1998). It is intruded by granitoid veins, and xenoliths

main lithologies: of the meta-rhyolite occur within the granite. The
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samples dated by U-Pb zircon technigue.
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meta-rhyolite contains a main NNE-8SW tectonic
fabric, which dips moderately to steeply to the SSE
(55-83°). The rock is grey, aphyric to fine-grained,
homogeneous, and highly foliated with sparse, euhe-
dral quartz and pink sodic plagioclase phenocrysts
and flattened biotite clumps (fiamme?). The pheno-
crysts are about 2 mm across and are set in a fine-
grained granoblastic matrix of quartz, feldspar,
muscovite, biotite, sphene and opaque minerals.

Pink-grey to pink mylonitic augen gneiss (monzogra-
nite in composition) locally contains feldspar mega-
crysts and i1s marked by a NE-SW-trending
foliation (S,) wrapping oriented pink and white feld-
spar augen. These megacrysts are commonly rimmed
by white plagioclase feldspar, forming a rapakivi tex-
ture. The megacrysts are commonly euhedral (oval
ones are also present), in spite of the intense deforma-
tion. Mafic microgranular and micaceous enclaves
are flattened within the S; plane. The S; foliation cuts
directly across the contact between enclaves and the
host rocks. Petrographically, the augen gneiss is com-
posed of quartz, microcline, oligoclase, biotite, horn-
blende, sphene, and opaque minerals. The plagioclase
is sericitised, while the hornblende is chloritised, indi-
cating a retrograde metamorphism. A penetrative,
gneissic fabric is present throughout the rock with a
strong, down-dip, mineral-elongation lineation. The
gneissic fabnc 1s defined by the alignment of biotite
and other mafic minerals, and by recrystallisation of

quartz into elongate ribbons. The K-feldspar mega-
crysts are highly resistant to deformation and define
the augen texture.

(3) Weakly foliated, pink to purple, K-feldspar-rich

monzogranite contains a foliation concentrated
within spaced shear bands that are parallel to $; in
the augen gneiss. No grain size change occurs in the
monzogranite when approaching the augen gneiss.
The transition from augen gneiss to the pink monzog-
ranite is not exposed but is interpreted to be grada-
tional, suggesting synchronous emplacement of their
granitic protoliths. In thin section the K-feldspar rich
monzogranite consists of quartz, microcline, micro-
perthite, oligoclase, biotite, sercite, sphene and hae-
matite. The oligoclase is commonly sericitised, while
the biotite is partly replaced by chlorite or sericite.
A penetrative gneissic foliation locally occurs in the
monzogranite, but it is not as intense as in the augen
gneisses and generally tends to intensify into narrow
shear zones trending SW-NE. The foliation is caused
by the alignment of biotite and sericitic muscovite.

(4) An aplitic microgranite typically contains a weak,

homogeneous S; foliation defined primarily by on-
ented biotite flakes and white microporphyritic feld-
spars. The microgranite forms veins intruding the
meta-rhyolite, granitic augen gneiss and monzogra-
nite and is the youngest granitic facies. The exposed
veins are between 10 m and 50 m in thickness. There
are no granitic veins intruding the microgranite
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although it is cut by post-tectonic quartz veins. The
microgranite is pink or grey, medium grained, leuco-
cratic, homogeneous and foliated. Petrographically, it
is composed of quartz, microcline, oligoclase, biotite,
sphene, zircon and opaque minerals. The same pene-
trative gneissic fabric found in the gramitic augen
gneiss can be found locally in the microgranites.

The latter three lithologies form part of a granite com-
plex now deformed into augen gneiss over most of the area,
especially along ductile shear zones shown in Fig. 4. In
some areas the augen gneiss contains enclaves of microgra-
nite. These enclaves have sinuous, invaginated contacts
with the gneiss and no sharp contacts have been observed
between the two rock types. Dykes of the same microgra-
nite show gradational contacts against the gneiss. The pen-
etrative S foliation can be traced directly across the augen
gneilss into the microgranite but is developed much more
weakly in the latter. These features imply that the two rock
types represent penecontemporaneous magmas but were
emplaced over some length of time during the deformation,
with the younger microgranite recording less strain. The
microgranite intrudes the meta-rhyolite, which is cut by a
network of microgranitic and guartz veins. These veins
are parallel to S; in the meta-rhyolite, and in the augen
gneiss and microgranite. Therefore, the granitoid rocks in
the Okwa Basement Complex appear to be synkinematic
with respect to 8,. This interpretation is similar to that of
Haslam (1978) quoted in Key and Rundle (1981). Pre-
served euhedral gquartz and feldspar phenocrysts in a
microgranular groundmass indicate a volcanic or subvolca-
nic origin for the meta-rhyolite.

U-Pb isotopic data were obtained on twelve zircon frac-
tions extracted from four samples of the Okwa Basement
Complex (Fig. 4). These samples are representative of the
four main lithologies present, viz. feldspar phyric meta-rhy-
olite (sample VR 11/95), augen gneiss (sample VR 02/95),
foliated monzogranite (sample VR 03/95) and microgranite
{sample VR 10/95).

3. Analytical procedure

The four samples, weighing between 2 and 3 kg each,
were dated at the Jack Satterly Geochronology Laboratory
in the Royal Ontario Museum, Toronto. Crushing and
mineral separation followed standard procedures. Minerals
were hand picked under a binocular microscope to avoid
visible imperfections. All zircon fractions selected for anal-
ysis were subjected to air abrasion (Krogh, 1982). Before
digestion all zircons fractions were washed in 4 N HNO;.
Zircon was dissolved in HF in Teflon bombs at 200 °C.
Pb and U were separated from Zr using anion-exchange
columns in HCI media. Total procedure blanks are nor-
mally 1-3 pg Pb and 0.1 U for the HCI in the microcolumn
technique applied to zircon. Occasional higher excursions
may be due to dust particles. All initial common Pb was
corrected assuming the isotopic composition of laboratory

blank. Pb and U were loaded on Re filaments with silica gel
and analysed with a VG-354 mass spectrometer in a single
collector mode. Uncertainties of individual analyses are
reported at 2 sigma and were propagated using an in-house
program that accounts for most sources of errors in the U—
Pb analyses. Discordia lines and weighted average calcula-
tions were done using the program of Davis (1982). Errors
are quoted at the 95% confidence level.

4. Results
The analytical results are summansed in Table 1.
4.1. Grey, feldspar-phyric meta-rhyolite { sample VR 11/95)

The sample yielded a relatively small amount of zircons.
Most of them are euhedral, short, prsmatic crystals show-
ing prominent development of {100} and {10 1} crystal
faces; they generally also contain abundant inclusions
and rusty cracks.

Three analyses were done (1-3, Table 1, Fig. 5a). One
fraction obtained from pieces of cracked euhedral crystals
resulted in analysis 3, which is 15% discordant. This result
was considerably improved by analysis of one euhedral
crystal (analysis 2) that is concordant at 2055 +4 Ma. A
third analysis on a clear zircon fragment (analysis 1) is also
concordant but has an age of 2101 + 4 Ma. This zircon is
interpreted as a xenocrystic. Apparent cores are visible in
some crystals from this sample, and it was inferred that
most of the better-looking grains, including the one which
yielded analysis 2, may have xenocryst cores. By contrast
the grains used for analysis 3 were chosen specifically
among those zircons least likely to have inheritance. The
207pb/*"Pb age of 2041 Ma for the latter represents at a
minimum age for the pure magmatic component, and sup-
ports the validity of the 2055 Ma age defined by analysis 2.

4.2, Grey augen gneiss (sample VR (02/95)

Zircons in this rock are generally uncracked and fairly
fresh. Grains are medium to small, euhedral, elongate to
stubby prisms with well-developed low-order crystal faces
on sides and tips. Many grains contain abundant small,
round, colourless inclusions. The colour varies from col-
ourless to pale brown. Colourless cores were seen in a
few grains.

Three fractions were analysed, two of which consisted of
single relatively large grains chosen to represent the colour-
less and brownish zircons. A third, multigrain fraction con-
sisted of a mixed population of colourless and brownish
zircons. All three abraded fractions gave concordant or
near-concordant analyses with similar *""Pb/™Pb ages
(analyses 46, Table 1, Fig. 5b). Fitting these data to a line
forced through zero gives an upper Concordia intercept age
of 2055.3 + 1.3 Ma with a 78% probability of fit, which is
well within acceptable limits for mutual agreement of the
data points.



258 RB. M. Mapeo et al. [ Journal of African Earth Sciences 46 (2006 ) 253-262

Table 1

ID-TIMS U-Pb data for zircon from the Okwa Granitoids

No. Zircon fraction Weight U ThiU Phc 2%Ph/™pp MppBy +  20ppASy  +  ppAMPh 4+ Disc
characteristics (pg (ppm) (pg)  (measured) (Ma) {%%)
(@) (b) (c) d)  (e) (f) (g) () (g (D (g)

Sample VR 11195 meta-rhyolite

1 1 Fragment 1 140 0.55 25 1378 0.3832 18 6880 B 2109 41 0.5

2 1 Euhedral 1 85 4y 1.0 1939 0.3749 19 6558 39 20548 41 01

3 5 Euhedral 1 200 047 23 1755 0.3180 15 5.517 31 20409 LR} 14.6

Sample VR 02(95 augen gneiss

4 1 Clear 2 190 0.59 1.0 8714 0.3762 12 6.580 22 20551 18 =02

3 1 Brown 3 90 044 il 2084 0.3753 18 6.571 30, 20569 48 0.2

& 30 Clear, Brown 26 260 0.50 84 19196 0.3735 14 6534 2620553 26 0.5

Sample VR 03/95 foliated monzogranite

T 1 Clear 3 0 48 0.8 10414 0.3767 14  6.59 12 20571 0 =02

8 1 Brown 5 220 0.31 1.5 16757 0.3754 12 6.570 22 20561 24 01

9 25 Brown, Euhedral = 33 270 0.39 26 #4856 0.3757 12 6.560 22 20564 0 03

Sample VR 1095 microgranite

10 13 Euhedal 1 310 .60 0.8 9057 0.3733 17 6.336 4 20565 2.7 0.6

11 Euhedral tips and 4 260 .54 28 8731 0.3703 18 6.471 36 20532 27 1.3
fragments

12 Euhedral tips and 3 270 0.50 21 8769 0.3689 18 6.448 35 20538 2.1 LT
fragments

(a) Deseriptions and number of zircon grains analysed; (b) uncertainties less than 1004 for weights of more than 10 pg, and about 50°4 for weights of about
1 pg. The uncertainty in the weight directly applies to the comresponding U concentration; (c) Th/U model value calculated from Pb/2%Pb ratio and age
of sample; (d) Pbe: total common Pb in analyses, includes blank and initial commaon Ph: (2) measured ratio corrected for spike and fractionation; (f)
corrected for spike, fractionation, blank and initial common Ph: (g) errors are absolute values and represent 2 sigma.

4.3. Purple foliated monzogranite (sample VR 03/95)

The zircon population from this rock consists of med-
ium to large grains. Most are cracked and altered but the
smaller grains are relatively fresh. As with the previous
sample, the zircons are euhedral, elongate to stubby prisms
with well-developed low-order crystal faces and bubble-like
inclusions, and they vary from colourless to pale brown.
The tips of the zircons tend to be asymmetrical, unlike
those from sample VR 02/95.

Two single zircons of different colour plus a multigrain,
mixed fraction were analysed and gave data points with
indistinguishable " "Pb/”®Pb ages (analyses 7-9, Table 1,
Fig. 5¢). Regressing these data to a line forced through zero
gives an upper intercept age of 2056.3 + 1.3 Ma with a 90%
probability of fit.

4.4. Pink microgranite (sample VR 10/95)

The zircon population in this rock is qualitatively simi-
lar to that of sample VR 11/95, but the zircon is more
abundant, permitting a wider selection of the most suitable
grains. Analyses were carried out on three multigrain frac-
tions of highly abraded crystals and fragments thereof
(analyses 10-12, Table 1, Fig. 5d). They yield three some-
what discordant data points with comparable *°"Pb/>"*Pb
ages of 2057-2053 Ma. The lack of spread prevents the cal-
culation of a discordia line from the three analyses alone,
but projections through lower intercepts between 0 and
500 Ma yield a range of possible upper intercept ages

between 2055 and 2038 Ma, from which a best estimate
of 2057 + 2 Ma is denved.

4.5. Discussion

The U-Pb zircon ages for all the dated rocks are identi-
cal within analytical uncertainties. The ages and errors of
the precisely dated plutonic rocks (augen gneiss, foliated
monzogranite and microgranite) are encompassed within
the time range 2056 + 3 Ma. This gives strong support to
our field interpretation that all these lithologies are part
of a single major igneous event, with progressive transition
between the intrusive bodies (no chilled margins or discor-
dant igneous foliations). Field evidence indicates that the
microgranite intrudes the feldspar-phyric meta-rhyolite
but their close similarity in age indicates that the meta-rhy-
olite represents part of the same magmatic event as the
Okwa plutonic rocks. The oldest age of 2101 +4 Ma is
interpreted to date a xenocryst. A similar inherited compo-
nent in the meta-rhyolite may be present in other zircon
grains from that sample that contains wisible cores. The
2101 Ma age provides evidence for the existence of rela-
tively young Palaeoproterozoic crustal components in the
study area at the time the exposed units of the Okwa Base-
ment Complex were emplaced approximately 50 Ma later.

Earlier attempts to document the age of the Okwa
Basement Complex in western Botswana using Rb-Sr
and K-Ar techniques gave ages younger than 2 Ga. These
ages can now be confidently taken as marking episodes of
partial or complete resetting of these isotopic systems dur-
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Fig. 5. (aHd) Concordia diagrams of zircon fractions from the Okwa Basement Complex.

ing younger tectono-metamorphic events. The new U-Pb
zircon dating confirms the Palaeoproterozoic age of the
Okwa Basement Complex and indicates it is similar in
age to the Richtersveld province (which has Sm-Nd ages
between 2089 and 1996 Ma, and U-Pb zircon crystallisa-
tion ages of between 1792 + 18 Ma and 1747 + 11 Ma)
West of the Kaapvaal craton in the Namaqua province
(Becker et al., 1996; Reid, 1997). Companson is drawn with
the Quangwadum Complex augen gneisses and granites
(with a *"Pb/*Pb zircon crystallisation age of
2050.5 + 0.6 Ma) north of the Okwa Complex, near the
Botswana—-Namibia border in the West (Singletary et al_,
2003), and with the Kheis-Magondi belt along the north-
western edges of the Kaapvaal-Zimbabwe cratons (Stowe,
1986; Munyanyiwa et al., 1995; Cornell et al., 1998; Mapeo
et al., 2001; McCourt et al., 2001). The trend of the Mag-
ondi belt towards the southwest is buried, but geophysical
data suggests the possibility of a connection with the Kheis
belt on the northwestern margin of the Kaapvaal craton
(Reeves, 1978) (Fig. 1). Magondi belt rocks intersected in
a borehole at Gweta in NE Botswana comprise high-grade
paragneisses (Camey and Dowsett, 1991; Carney et al,
1994). The Magondi Supergroup meta-sedimentary rocks

were deposited after =~2.125 Ga metamorphosed and
deformed between 2027+ 8 and 1997 + 2.6 based on
SHRIMP U-Pb zircon dating of paragneisses and late to
synkinematic granites (Mapeo et al, 2001; McCourt
et al., 2001). South of Gweta borehole, granitoids rocks
exposed at Kubu Island yielded U-Pb zrcon ages of
2039 + 1 (Majaule et al., 2001), indicating a southward
extension of granitoids rock emplaced during orogenesis
in the Magondi belt. Farther south of these small outcrops
at Kubu lsland the Mahalapye Granite at the western
extremity of the central Limpopo belt yielded a SHRIMP
U-Pb zircon crystallisation age of 2023 + 7 Ma (McCourt
and Armstrong, 1998).

Rainaud et al. (2005) describe =2050-1850 Ma mag-
matic arc terrane that extends from south-western Zambia
and the Democratic Republic of Congo into northern
Namibia and NW Botswana, defining a Palaeoproterozoic
magmatic arc termed the Kamanjab-Bangweulu terrane.
Key units in Zambia are rocks of the *Lufubu Metamorphic
Complex’ formed between 2050 and 1850 Ma, and in north-
ern Namibia granitic gneiss of the Tsumkwe inlier yielded a
SHRIMP U-Pb zircon age of 2022 4+ 15 Ma (Hoal et al,,
2000). The Tsumkwe gneisses are similar to the Quangw-
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adum Complex augen gneisses and granites to the North
along the Botswana—MNamibia border, North of the Okwa
Basement Complex (Singletary et al, 2003; Rainaud
et al., 2005). However, all of the Palacoproterozoic rocks
described above are separated from the Okwa Basement
Complex by an inferred subsurface extension of the Pan-
African Damara belt (Hanson, 2003; Singletary et al.,
2003), and possible relations between Palaeoproterozoic
units on either side of this younger orogen remain unclear.

An =2-Ga tectono-metamorphic event has also been
documented in the Triangle Shear Zone of the Limpopo
Belt (Kamber et al., 1995) and is inferred to mark a major
Palacoproterozoic dextral shear zone (McCourt and
Vearncombe, 1992; Rollinson and Blenkinsop, 1995). Bar-
ton et al. (2003) have shown that this tectono-metamorphic
event in the Limpopo belt may have been accompanied by
the emplacement of tonalities, granodiorites and granites at
72.0-1.9 Ga. The Okwa Basement Complex and the
Kheis-Magondi belt may represent a partly bured geo-
graphically continuous although diachronous Palacoprote-
rozoic orogenic system in the Kalahari craton active at the
same time as the emplacement of the Bushveld lgneous
Complex (Hanson, 2003; Rainaud et al., 2005).

The best constrained temporal correlation is with
emplacement of the Bushveld Complex, which now has a
precise age determination of between 2060 +£2 and
2055 +2 Ma (Walraven and Hattingh, 1993; Walraven,
1997; Buick et al., 2001; Eglington and Armstrong, 2004;
Mapeo et al., 2004). The Lebowa Granite Suite (compris-
ing Nebo, Makhutso and Steelport Park granites) of the
Bushveld Complex was emplaced between 2058 + 4 and
2053 +4 Ma, which is indistinguishable from the ages at
Okwa (Harmer and Armstrong, 2000). The Okwa age 1s
also similar to ages of the Critical Zone of the Rustenburg
Layered Suite which yielded SHRIMP and IDTIMS zircon
ages of 2054 + 3 Ma and 2056 + 2 Ma, respectively (Har-
mer and Armstrong, 2000). This suggests a link between
magmatism at the margin of the Kaapvaal craton and
major Intra-cratonic magmatism. Intrusion of the Bushveld
mafic-ultramafic rocks is associated with coeval emplace-
ment of a large volume of felsic magmas (Walraven,
1985; Hatton and Schweitzer, 1995; Schweitzer et al.,
1995), and Bushveld-type intrusive complexes occur in SE
Botswana (e.g., Moshaneng and Kukong areas), where
recently obtained *’Pb/*™Pb zircon emplacement ages
range between 2060 + 3 and 2053 +4 Ma (Lock et al,
2002; Mapeo et al., 2004). Although Bushveld magmatism
is exposed 500 km away from Okwa near the middle of the
Kaapvaal craton, it represents the largest single igneous
body ever documented, and is on the order of hundreds
of kilometers across. Its generation would have required
an unusually extensive degree of mantle melting. The close
age comrespondence between the Bushveld intrusion and
Okwa rocks suggests that crustal melting associated with
the thermal anomaly that produced the Bushveld magmas
may have been much more extensive than previously
thought.

5. Conclusions

New U-Pb zircon data indicate that igneous rocks of the
Okwa Basement Complex in western Botswana were
emplaced over a narrow time span of 2056 + 3 Ma. This
age places the Okwa rocks within the Eburnean—Ubendian
orogenic system in Africa. The age of the Okwa Basement
Complex 1s indistinguishable from precise ages reported for
the Bushveld complex in South Africa suggesting a link
between marginal and intra-cratonic Bushveld-age magma-
tism at this time.
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