Single-electron states near a current-carrying core
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Abstract

The energy spectrum of an electron confined near a current-carrving core is obtained as a function of the azimuthal
applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron’s axial
wave number (k) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum
mumber () states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions
involving the lowest-order pair of the electron’s energy subbands within the dipole approximation. The radiation field is
taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole
approximation, the allowed transitions are only those governed by the following specific selection mles. The azimuthal
quantum numbers of the initial and final states must differ by unity while the electron’s axial wave number is conserved.
The azimuthal magnetic field is also found to lift the multiple depeneracies of the &, #0 interaction integrals as well as

those of the oscillator strengths for optical transitions.
i 2003 Elsevier B.V. All rights reserved.
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I. Introduction

The interest in the dynamics of electrons under
the influence of a static uniform magnetic field
grew even more rapidly with the realization of
technologies to fabricate nanostructures [1,2]. This
renewed interest was also, in part, due to potential
device applications, which rely on the reduced
phase space of the charge carriers [3]. [t needs 1o be
emphasized that the orientaton of the applied
magnetic field relative to the heterointerfaces of
low-dimensional systems is crucial in that it
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determines the broad character of the confined
charge carriers. Perhaps as a simplification, the
usual practice 15 to consider the application of a
magnetic field either parallel or perpendicular to
the heterointerfaces of plano-surface low-dimen-
sional systems. In recent years, systems in which
the applied magnetic field is spatially inhomoge-
neous have received a great deal of attention [4).
Systems  studied nclude nanostructures  with
plano-heterointerfaces [5-11], semiconductor rings
[12]), magnetic rings [13] as well as magnetic
mtdoets [14]. A magneuc field with non-zero
gradient can be created by simply fashioning the
core of the electromagnet, for example, Lo have a
conical end-face. Some relatively recent technigues
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involve integrating semiconductors with ferromag-
netic [15] or superconducting materials [16]. There
has also been some hmited discussion of the
influence of an azimuthal inhomogeneous mag-
netic field on the charge carriers based on a semi-
classical formalism [17]. The uniform-gradient
azimuthally directed magnetic field there is
thought to be induced by a current passed along
the length of a core, which in practice might be a
superconductor. Clearly, the dynamics of electrons
under the influence of a spatially inhomogeneous
magnebc can no longer be characterized unigquely,
for example, in terms of the cyclotron radius or
cyclotron frequency. In any case the electron’s
orbits are not closed for a wide range of the
relevant parameters [17] but are found o be
predominantly snake-like in character [9-11). In
other developments, experimental techniques for
the control of the specific number of electrons that
can be “injected’” into a nanosystem are now well
established [12]. A significant mmplication of this
development is that, neglecting electron—electron
mteractions in the evaluations of the other
quantum properties of the charge carriers 18 no
longer, necessarily, a gross simplification.

The aim of the investigations undertaken hereis
to map out the energy spectrum of an electron
confined near a current-carrying core asa function
of the current-induced azmuthal magnetic field.
The novel feature of the problem posed here is the
orientation of the spatally inhomogeneous mag-
netic field relative to the surface of the hetero-
structure. An external magnetic field, no matter
how weak, can have a significant influence on the
general properties of charge carriers in low-
dimensional systems. Now, a current-induced
magnetc field s essentially an integral part of
electrical devices. It is important, therefore, to
evaluate the influence of such a field on the charge
carriers. An understanding of the basic properties
of electrons under the influence of an azimuthal
magnetic field should be of value in the realization
of technologies for potential device applications.
As a contribution towards the understanding of
properties of quantum electrons, having obtained
the eigenfunctions, these are then employed in the
calculations of the oscillator strengths for optical
transitions.

This paper is organized as follows: the eigenva-
lue equation is derived in Section 2; the general
formalism for calculating the oscillator strengths
for optical transitions in systems with cylindrical
symmetry 1s presented m Section 3; and the
conclusions are contained in Section 4.

2. Energy eigenvalues

A brief description of the system studied here is
as follows: a current { of uniform density Jg; 15
passed along the axis of a cylindnical core of radius
R, possibly as a superconductor. The core is
thought to be ensheathed with a perfect insulator,
in essence constituting an infinite potential barrier.
The purpose of the barrier is to prevent the leakage
of current inte the host material as well as to
restrict the motion of the electrons strictly to the
host material. For convenience, the spatial thick-
ness of the potential barrier is assumed o be zero.
Electrons are confined near the core, in part, by an
electric potential, which is modelled as follows:

o0 for p< R,
Vip) = {%ymﬁ{pz—ﬂz] for p> R, (1)

where wy 15 the angular frequency of a classical
simple harmonic oscillator of mass u, taken to be
the same as the effective mass of an electron. The
motion of the electrons, limited to the region
outside the current-carrying core, 15 influenced by
the spatially inhomogeneous current-induced azi-
muthal magnetic field. The vector potential of the
external magnetic field, B = ug /¢ /(2mp), is 1aken
in the gauge

A= —1B.R(1 + 2In(p/R)), 2)
where B; = p I /(27 E) 15 the value of the magnetic
field at the surface of the core. The solution of the
Schridinger equation is sought in the general form

i = Cpe explikz) explimg)y(p),

m=0+1,+2, .., 3)
where Che 1% 2 normalization constant, k. 15 the
axial component of the electron’s wave vector, and
# and m are the radial and azimuthal quantum

numbers, respectively. It is convenient to define the
fictitious “cyclotron radius™, g, = {h.fcﬂgjm, and
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the fictitions “cyclotron frequency™, we = ef /1,
in terms of the value of the magnetic field at the
surface of the core. With the forms of the confining
potentials, Fip) and A, the radial function y(p) is
found to satisfy the following second -order lingar
differential equation:

d (’1 d_x) v {]—m3 + i_[kfsz:fG - AE ity

Tar\"ay) " 13
- 4_3‘3::351,-'0% -2k R + f.:,‘]r;r
' 2 ] I
+ oy fog — gnin(ife)
x [2k:R = I = fos In/f) }2 = O, )

where § = p? /222, fo = R?/28%, and E,. is the
confinement part of the electron’s total energy,
Etor, given by

H!
2u’
in which the second term is the axial kinetic

energy. It is not possible, in particular, becaunse of
the logarithmic terms, to cast Eq.(4) into a

b

Ero = Eoe +

(5)

PR fg = 4E s oy + (1 = 4 fel, 4261 + di}fe = 21 + c1).R]

results, that the strength of the confining electric
potential is suitably chosen so as to confine
electrons to regions near the surface of the core.
With the logarithmic terms now replaced by their
approximate linear graphical fittings, the substitu-
tion

x={ F, (W)

where

{ = [+ 4{1;5,-'0% + 2ea(1 - k,R;’_fc,i}]]"jr;, (&)

leads to
d2F dF
(S +6-0-aF =0, ©)

which is the canonical form of Kummer's equation
for the confluent hypergeometric function. The
solution that s bounded at (= w 18 #F =
Ula, b, [), the parameters @ and & of which are
given by

a—.% t ;{nq r%{f and B+ |m + 1, (10}

in which

f

[dz i 4{1%..“’{]?55 i

canonical form. However, solutions of Eq.(4)
may be found in closed form if the logarithmic
terms are replaced by their linear fitting forms as
follows:

Inx=e + cax and In°xzd) + dox. (6)
The constant factors ¢ and d; (i = | or 2), which
depend on the range of the values of x used, ar
simply read off the computer on using graphical
software packages, for example, such as MSDOS-
grapher. It is worth commenting that a much
closer fit is found for the second (In® x) of these
terms. Note that the first of the above approxima-
tions leads to a form of the potential which
corresponds to a uniform azimuthal magnetic field
of magnitude: |B| = e:B;. This result does not
differ much from the crude average value & = 1B,
of the actual magnetic field, for regions very near
the surface of the core, that is, p=R. It is

important, for the wvalidity of the subsequent

- 11
2ol = ke Rff]V? an

The application of the standard boundary condi-
tion, that of continuity of the wave function at the
surface of the core p = R, leads to the following
dispersion relationship for the determination of
the electron’s energy eigenvalues:

Ula,b,{g) =0, (12)

where (g 15 given by Eq.(8) but with the
replacement, p = R. Now, the value of B, can
easily be computed from the given values of I and
R, hence the other relevant quantities, for example,
dg and o, can be determined. Mapping out the
single-glectron energy spectrum as a function of
the field is then a matter of the usual root-finding
routine—fix fi,, |m| and k.R and then search for
the E,. that satisfies the dispersion equation. The
numerical wvalue of the effective-mass of the
electron is taken as roughly 0,067 times that of
the free electron. It is convenient to define an index
of the strength of the electric potential, , given by
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a? = ¥ V"ﬁ}.f Fg. where Fy~190meV is the
conduction  offset  between  GaAs  and
AlgasGug s As. It is important to restrict o to low
values since the electron’s energies are determined
in the effective mass approximation. However, in
view of the approximations of the logarithmic
terms in Eq. (6), « should also be such that the
electrons are confined to a region within the
vicinity of the core. Suitable values of @ can be
estimated from the spread of the radial wave
function [18]. The spatial extent of the wave
function directly prescribes the appropriate range
of the values of x which in turn leads to the
determination of particular numerical values of the
constants ¢; and ;. Alternatively, = can be
adjusted so that the radial wave function does
not spread much beyond a predetermined range of
/R values. Choosing the latter approach, within
the range 1=p/R<S, very good fittings to the
above mentioned logarithmic terms are obtained
with the following constants: ¢p = —0.1122, ¢2 =
0.373, di = —0.849 and 45 = 0.68E,

For ease of graphical presentation of the results,
the variation of only the first two lowest-order—
s =10,1 and 1, 2—energy subbands with the
surface-value of the magnetic field, B, is illu-
strated in Fig. 1. The variation of the higher {m,/}
quantum number energy subbands with the field is
very similar to those shown here and is therefore
left out for brevity. The relevant parameters for
the system considered are: R= 50 A, o= 0025
and the pairs of {m,k.R} values indicated there,
also used to identify the different curves. To be
more specific, the {m, k. R} values are: {0,0.00} for
the thick solid curves, {0,—0.10} and {0,0.10} for
the dashed and the solid smooth curves, respec-
tively. Further, the lowest group of the three
curves at B = 0T, say, correspond to £ =1 and
the upper group of the three curves, at the same
value of the field, correspond to # = 2. It is seen
that the azimuthal magnetic field lifts the double
degeneracy of the non-zero k. energy subbands.
The k. >0 subbands initially decrease in energy
and are characterized by minima in their varation
with the magnetic field. For small fields, the
Zeeman splitting is almost linear, however, for
large fields all the energy subbands show a
somewhat parabolic rise in B,. The initial decrease
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Fig. 1. {a) Some of the lowest-order single-elsctron energy
subbands as functions of the surface-value of the current-
induced magnatic fisld The key relevant parameters used are
R=50 A, &=0025 ¢=12 and the pair of {m, k:R} shown
there to kentify the individual curves, These are {0, 0,00} for
thick sobd curves, {1, =010} and {1,010} for the dashed and
the smooth solid curves, respectively. Further, £ =1 for the
lowest group of the three curves at B, = 0T, say, and & = 2 for
the upper group of the three curves. (B) The vanation of the
ground state (m= {0, & = 1) energy Es with B The relevant
parameters are: B = 50 A, a= 0025 and the range (L0 —0.26
of k. R values, in steps of 0L01.
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of the k. = 0 subbands with the increase of the field
is due to the fact that in this case the two parts of
the axial canonical momentum—@~P, and ed.—are
oppositely directed. For k. <0, the two parts of the
momentum are additive, hence the electron’s
energy subbands increase monotonically with the
increase of the field. The condition for obtaining
minima in the variations of the k. =0 energy
subbands, based on a perturbative analysis, may
be cast as follows:

B {p* s = pok-R, (13)

where gy = h/e 15 the elementary flux quantum;
the ratio of Planck’s constant (/) to the electronic
charge (¢) and ¢p*% is the quantum mechanical
expectation wvalue of the square of the radial
distance. A somewhat paradoxical interpretation
of Eq.(13) is that minima of the k. >0 energy
subbands occur whenever k:R clementary flux
quanta are enclosed within the electron’s fictitious
cyclotron radius, a.. Note that here, in contrast to
the case of an axial applied magnetic field; see for
example Masale [18]; the double degeracy of the
m#=0 states is preserved. As a consequence of
having a forbidden inner region for the motion of
the electron (p<R), the {m = 0; k. =0} subband
is not always the ground state. In fact the Zeeman
splitting of the k.70 states by the azimuthal field
15 such that as B, increases, there arises a
progression of ground-state energies correspond-
ing toincreasing values of the electron’s axial wave
number. As mentioned earher, because of the
spatial inhomogeneity of the applied magnetic
field, the electron’s orbits are not closed for a wide
range of the relevant parameters. Nonetheless,
analogously to the analysis of a two-dimensional
system in a magnetic field [9], & R may be regarded
as the center of the electron™s orbital motion
which, for convenience here, 1s taken to be located
in the z=0 plane. Note that the ammuthal
magnetic field tends to project the electron’s orbits
in the plane containing the core-axis. Now,
increasing k. R means that the electron’s wave
function is compressed either against the core
barrier or the parabolic walls of the electric
potential of the host material. There is, however,
a specific eritical set of the relevant parameters, in
particular, m, B and kR, for which the corre-

sponding electron’s wave function is least per-
turbed by the overall potential of the system. It is
the electron’s eigenvalue of this particular wave
function which becomes the ground state. Fig. 1b
shows the wariation of the ground state (m =
0, £ =1) energy Eg. that is, the lowest energy
eigenvalue, with B, The relevant parameters are
R= 50 A, & =0.025 and the range 0.00—0.26 of
ko R wvalues. It is seen that this curve is made up of
nearly straight line-segments, each corresponding
tor a differential k.8 = 0.01 of the electron’s axial
wave number. Reducing this differential will of
course result in a much smoother curve. It is worth
mentioning that the representation of the field by a
constant value, B.. somewhat overshadows the
spatial  inhomogeneity of the actual applied
magnetic field. Nevertheless, for suitably chosen
values of o the electronic motion can be restricted
to regions where the local magnetic field does not
differ much from the value at the surface of the
core.

3. Oscillator siremgths

This section deals with the derivations of
oscllator strengths for optical transitions, ob-
tained within the dipole approximation. The
radiation field considered is that of elliptically
polarized light, taken in the form
f =(fy, cos wi, +Foy sin wt,

+ e sinfeat + 7)), 14)

where p is an arbitrary phase factor, $oe, Fop
and &g, are the amplitudes of the radiation field in
the respective directions. In the above equation,
the positive and negative signs correspond to right-
and left-hand elliptical polarization, respec-
tively. In  cylindrical  coordinates, r=
(peosg, psing, ), the interaction potential,
Wy =edf -r, in the dipole approximation takes
the form
Wy =e|pdy, cos wi cos ¢+ pdyg sin wi sin ¢
+zdf g sinfwt + ). (15)

MNow, the term proportional to &g of matrix
clements, {mi'#|W)m¢ », vanishes because of the
orthonormality of the wave functions characterized
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by the same azimuthal but different radial quantum
numbers. In particular, for dreularly polarized
light, that is, g, = Fog. the matnx elements are
found to satisfy the proportionality relationship

{al E\Wme s o Do [Bramrst + Bt 1100, 2

(16)

where fope = ¢p/R is the interaction integral
given by

al
Iowtime —[ xz;gwgdra dx, x=p/R (17}

In the usual notation, the mf(p'¢") quantum
numbers refer to the initial (final) states of the
electron. In the dipole approximation and specific
to circular polarization, the selection rules for the
allowed transitions are that m and »r' must differ by
unity and for the conserved axial wave number,
that is, k:=Kkl. As in similar evaluations in
quantum well structures [19] or in quantum
structures which possess cylindrical symmetry
[14,18], the oscillator strength for optical transitions
may be defined as

.
Faw 23 ;;R% Enitr = Eme M o (18)

where mi, is the free mass of the electron. The
osdllator strength may be regarded as an index of
how strongly a system interacts with the radiation
field. In view of potential device applications, the
transitions of practical interest are those for which
AE = (Egp — Eguz)is in the far-infrared window of
the electromagnetic spectrum, that is, AE only a few
milli-electron volts. Numerical results areillustrated
only for the m=0—n = | transitions, that is,
involving the two lowest-order energy subbands,
for both of which ¢ = 1.

Fig. 2 shows the interaction integrals as fune-
tions of the magnetic field for the—m =
O—|nf| = l—optical transitions near a core of
radius R = 50 A. The additional parameters are
a = 0.025 and the sequence {—0.10,0.00,0.10} of
the k.R values indicated there to identify the
different curves. To be more specific, k. R = 0.00
for the thick solid curve, 0.10, for the smooth sohd
curve and —0.10 for the dashed curve. It is seen
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Fig. 2. The #=1 interaction integrals for the transitions:
m=0-=m =1 2z functions of the surface-value of the
magnetic field near a core of radivs B = 5 A and such that
a = (L0253, The different curves are identified by the correspond-
ing values of kR, which are: (.00 for the thick sobd curves,
—0.10 and 0.10, for the dashsd and smooth sobd curves,
respectively.

that the curves for the interaction integrals
corresponding to the three values of kR are triply
degenerate at zero magnetic field. This degeneracy
of the interaction integrals is lifted by the
azimuthal magnetic field, with the curve corre-
sponding to &, <0 being depressed the most. While
the curves for k. <0 decrease monotonically with
increasing B, the curve for kR = 0.10 is lfted
above these and in fact posses a maximum.
Arguably, for the relevant parameters of the
system used, in particular the moderate values of
k. R, the electron’s wave function corresponding to
kR =010 is concentrated at relatively large
radial distances. Note that the corresponding
center of the electron’s orbit is the furthest from
the core axis of symmetry. By an earlier argument,
the peak of the interaction integral oceurs at a field
when the electron’s orbit fits well inside the overall
potential profile. Apart from the initial rise of the
curve corresponding to k. R = 0.10, the general
trend is that of the decreasing interaction integrals
with the increase of the magnetic field. This is
because as the field 1 increased, the electron’s
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wave function is increasingly tightened around the
center of orbit and thereby reducing its spatial
extent.

Fig. 3 shows the oscillator strengths for the
[m1'] = 1 =m = 0 optical transitions as functions of
the surface-value of the magnetic field. The other
relevant parameters: B = 50 A, & = 0,025 and the
sequence {—0010;0.00;0.10} of the k. R values, are
exactly as for Fig. 2. The values of k. R are shown
there to identify the different branches of the
oscillator strengths. Just as for the interaction
integrals, the azimuthal applied magnetic field lifts
the triple degeneracy of the osdllator strengths.
From a comparison of Figs. 2 and 3, it is seen that
each of the corresponding branches of the inter-
action integrals and the oscillator strengths display
more or less the same functional form in their
variation with the field. This is because the energy
separations between the relevant subbands, of
course, corresponding to the same k., are more or
less equal. For the relevant parameters used,
stronger optical transitions are predicted for
positive as opposed to negative wvalues of the
electron’s axial wavenumbers. It is worth com-

o] 4 &
B4T)

8 1 P

Fig. 3 The wvariations of the osdllator strengths with the
surface-value of the magnetic ficld corresponding to exactly the
interaction integrals shown in Fig. 2. The relevant parameters
are as for the preceding figures; R= S0A, a=0025 m=
0, [#f|=1 and the values of k. B= —0.10, 000 and 010
shown there to identfy the different curves.

menting that the explicit character of these optical
transitions depends in a very critical way on the
values of k. =0 used. For example, there is a
critical set of the relevant parameters of the system
for which the argument of the radial function {
passes through zero and becomes complex. For
exactly the set of parameters when =10, the
parameter a of the confluent hypergeometric
function develops a singularity. The results ob-
tained using the critical set of the relevant
parameters of the system differ very drastically
from those presented here. The results when both
the parameter g and { are complex cannot be
adequately dealt with here and their discussion is
not pursued further. Nevertheless, in the related
experimental investigations, suitable values of k.,
can effectively be selected through the application
of an electric in the axial direction. The strength of
the electric field required to give specific values of
k. can be deduced following the analysis of Das
and Chakravart [20]. 1t is also worth commenting
that the results presented here are illustrative
rather than predictive. This is on account of some
of the unrealistic parameters used, in particular,
the radius of the core. However, it is anticipated
that more or less the same results shown here can
be reproduced within a relatively small range of
the field in the case of a larger radius. This should
be the preferred balance of the relevant para-
meters, that is to say large R and small range of
values of B, in the corresponding experimental
investigations, for example, such as by Ashoori
et al. [21]). Perhaps a more convenient representa-
tion of the applied field is through the dimension-
less variable, f. The electron energy subbands, for
example, may be then be plotted as universal
curves of Epe/Ey versus fo, where Eg = h*/(2uR?).
MNote that in this representation, the radius scales
both axes as R* [17].

4, Conclusions

The energy eigenvalues of a single electron
confined near a current-carrying core as functions
of the current-induced magnetic field have heen
obtained within the effective-mass approximation.
The field was represented by, B, the value at the
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surface of the core, which somewhat overshadows
the spatial inhomogeneity of the actual applied
magnetic field. This representation is therefore
more appropriate for strengths of the electric
potential such that electrons are confined in very
narrow channels near the surface of the core. The
azimuthal applied magnetic field was found to lift
the double degeneracy of the k. #0 energy sub-
bands while that of the m=0 states is preserved.
The situation s the other way around in the case
of a parallel applied magnetic field. A further
analysis involved the evaluations of oscillator
strengths for optical transitions in the dipole
approximation. In the dipole approximation and
for circularly polarized light incident along the axis
of the core, the selection rules for the allowed
optical transitions were established to be: a) the
final (») and the initial (m) azimuthal quantum
number states must differ by unity;, b) the
electron’s axial wave numbers of the final and
the initial states must remain the same. The
interaction integrals as well as the oscillator
strengths for the transitions considered, in parti-
cular, for the k. R = 0.00 or +0.10 states, were
found to be triply degenerate at zero magnetic
field. The azimuthal magnetic field was again
found to lift this triple degeneracy. For the
relevant parameters used, the strongest optical
transitions are predicted for positive axial wave
numbers of the electron, moreover for weak
magnetic fields. As noted previously, the radius
of the core used here, R=50A, is perhaps
unreahistically small to support a measurable
current. However, the results presented adequately
illustrate the fundamental properties of the inter-
actions mvestigated. In the corresponding experi-
mental investigations, the current will have to be
passed along a core of a sizeable radius. This has
the added advantage that to reproduce the results

presented here, for example, a current of relatively
low density would be required.
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