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ABSTRACT

Uncertainty and irreversibility of capital expenditures are major concerns in capital budgeting.

In a highly uncertain world were management has the flexibility to adjust their operating

strategy, option value is created, this option value is not captured by standard methods of

capital budgeting. In this paper we review standard methods of capital budgeting such as

discounted cash-flow (DCF), return on investment (ROI), payback period. Complex methods

such as Monte-Carlo simulation and scenario analysis are discussed. We then look at decision

tree analysis (DTA) and how it addresses the issue of flexibility and it’s main shortcoming i.e.

‘the discount rate problem’. Real options analysis (ROA) is discussed and we look at how it

addresses the issue of managerial flexibility and how it overcomes the discount rate problem

inherent in DTA. ROA is then applied to value an investment opportunity of a basalt quarry

by Mbebane Enterprises. The project according to NPV analysis and IRR method found it

to be a ‘go’ project. Using ROA, the CRR model in particular, we found option value to be

significantly larger than the NPV. The binomial lattice was used as a guiding tool for timing

the investment.

vii



Chapter 1

Introduction

1.1 Background

Capital budgeting is the process of allocating resources among investment projects over a long

time horizon [47]. The capital budgeting process is divided into the following stages [12]:

S1 Investment screening and selection;

S2 Capital budget proposal;

S3 Budgeting approval and authorization;

S4 Project tracking;

S5 Post-completion audit.

Since resources are limited, management are faced with the arduous task of identifying and

selecting projects which are expected to generate benefits for the firm or maximize shareholder

wealth [12]. Therefore the core of capital budgeting is valuing proposed projects, which is

performed in stage 1 and stage 2. In stage 1, projects which are consistent with the firm’s

corporate strategy are selected and screened by estimating how the projects will affect future

cash-flows of the firm [12]. The second stage involves creating a budget by estimating cost

and revenues of the project [12]. In a non-stochastic world, evaluating proposed projects is

simple, determine future cash-flows and discount these cash-flows at the risk-free rate. The

problem becomes slightly more complicated if we introduce uncertainty in the project inputs,

this requires more sophisticated methods in order to determine project value. According to

Webster’s dictionary, uncertainty or risk, is the possibility of suffering harm or loss, this is

difficult to quantify. To further complicate our problem, one must also account for managerial

flexibility and determine its impact on project value. This managerial flexibility refers to man-

agement’s ability to mitigate risk and to take advantage of fortuitous economic circumstances.

Most capital budgeting methods neglect the impact of managerial flexibility on project value.

Neglecting flexibility means investment projects are grossly undervalued [29]. Another impor-

tant aspect of investment projects is the issue of irreversibility (sunk costs) and how this affects
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the timing of investment opportunities [10]. Irreversibility, uncertainty and managerial flexi-

bility are key issues that must be addressed when appraising investment projects especially in

mining firms. In the mining industry the value of a mine/quarry is derived from the mineral

resource it extracts. Commodity/mineral resource prices are very volatile and management has

the capacity to alter operating strategy depending on market prices. This includes waiting to

invest, contract/expand operations, shutdown/restart mining operations or abandon for sal-

vage value. The purpose of this dissertation is to analyse an investment project by a quarry

which has to deal with the issues of irreversibilty, uncertainty, having the capacity to alter its

operating strategy contingent on market conditions. We first review the various capital bud-

geting techniques and how these methodologies fair in capturing the value of projects/assets in

an uncertain economic firmament where managements have the flexibility to make mid-course

corrections. We discuss discounted cash-flow (DCF) methods, return on investment, payback

period, sensitivity analysis, scenario analysis, Monte-Carlo simulation, decision tree analysis.

Contingent claim analysis is reviewed, in particular we look at the Black-Scholes-Merton model

and the Cox, Ross and Rubinstein binomial model. We then look at real options analysis which

is the application of contingent claims analysis and how this method addresses the key issues of

irreversible investment, uncertainty and managerial flexibility. We then analyse an investment

opportunity by a quarry using the real options methodology.

1.2 Problem Statement

Project value is dynamic in nature. This change in value is due to unpredictable, volatile

market forces and managerial flexibility. According to traditional capital budgeting methods,

the only source of value is cash flows. These cash flows are seen as being static across time

and hence projects are treated as being analogous to bonds. This view on the source(s) of

project value is narrow [27] and [33]. This particular view on project value ignores the impact

of managerial flexibility on project value, consequently undervaluing investment projects [31].

This effectively reduces the quality of investment decisions.

1.3 Objectives

• To review traditional capital budgeting methods and see how they fair in capturing value

inherent in investment projects with high levels of uncertainty and a dynamic, flexible

management.

• To review contingent claims analysis and discuss how this can be applied to value projects.

• To build a dynamic, yet simple model which is able to capture both sources of project

value and aid in timing investment projects.

• To appraise the value of a basalt mining project by Mbebane Enterprises.

2



Chapter 2

Traditional Capital Budgeting Methods

2.1 Discounted Cash-flow Measures (DCF)

The DCF methodology is the most widely used capital budgeting tool in project valuation.

The groundwork for the methodology was laid by Irving Fischer in his two books [8]. The

DCF technique is predicated on the idea that there exists a traded twin security or portfolio

of securities that span the project being evaluated. This means that the value of the project

under consideration can be calculated by determining the value of the twin traded security or

portfolio of securities. The two main DCF methods are:

• Net Present Value (NPV) Method;

• Internal Rate of Return (IRR) Method.

We study these methods in the following sections.

2.1.1 Net Present Value (NPV)

In this DCF method the value of an asset is the present value (PV) of its expected cash

flows. The present value of the investment cost is then subtracted from the present value of

its cash flows to obtain the net present value (NPV). There are two ways to carry out a net

present valuation, these are the risk adjusted discount rate (RADR) method and the certainty

equivalent cash flows method. In the RADR method, cash flows are discounted at a market

risk adjusted rate that reflects the riskiness of the project and also factors in the time value

of money whilst the implementation costs are discounted at the risk-free rate. The cash flows

and implementation costs are discounted at different rates because costs are subject to private

(operational) risk, which is not compensated by the market, while cash flows are subject to

market risk factors such as market demand, price, e.t.c [30]. However, with the certainty

equivalent cash flows method, the risk adjustment is performed on the cash flows which are

then discounted at the risk-free rate to account for the time value of money. For details refer

to [47]. In this chapter we will focus on the RADR method which is the method of choice. The

formulae for this method are given below:

3



PV =
N∑
t=1

E[Ct]

(1 +RADR)t
(2.1)

NPV =
N∑
t=1

E[Ct]

(1 +RADR)t
−

N∑
t=1

Implementation Costt
(1 + r)t

(2.2)

where:

E[Ct] is the expected cash flow at time t;

RADR is the discount rate;

N is the project lifetime;

r is the risk-free rate.

Due to the difficulty of estimating project cash flows over long horizons, analysts normally

truncate their cash flow forecast to about five years [9]. A terminal value is then calculated

to determine the project’s cash flows for the remainder of the project life. There are several

methods for determining the terminal value, the method applied is based on the growth as-

sumptions of the project’s cash flows. These methods include Gordon Constant Growth Model

(GCGM), Zero growth perpetuity consul, and the super-normal growth models [29]. Below are

the terminal value formulas for each of the models listed.

Gordon Constant Growth Model

Cash flows are assumed to grow at a constant rate through perpetuity. The formula is given

below:
∞∑
t=1

E[Ct−1](1 +Gt)

(1 +RADR)t
=

E[CT−1](1 +GT )

RADR−GT

=
E[CT ]

RADR−GT

.

Zero Growth

Cash flows are assumed to stagnate, i.e no growth in cash flows after t. We give the formula

below:
∞∑
t=1

E[Ct]

(1 +RADR)t
=

E[CT ]

RADR
.

Punctuated Super-normal Growth

Cash flows are assumed to experience points of super-normal growth, the formula is given below:

T∑
t=1

E[Ct]

(1 +RADR)t
+

[
E[CT ](1+GS)
[RADR−GS ]

]
(1 +RADR)S

where in the above:

t is the individual time periods;

E[Ct] is the free cash flow at time t;

S is the time when a punctuated growth occurs;
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G is the expected growth of cash flow;

T is the terminal time for which a forecast is available;

RADR is the risk adjusted discount rate.

The total asset value is the given by

NPV = Present Value of Forecasted Cash Flows + Terminal Value

− Present Value Of Implementation Cost

Decision Rule

If NPV > 0 then the investment or project is worth undertaking.

If NPV = 0 this suggests that the project is just managing to cover the cost of capital.

If NPV < 0 this means that the investment is a poor one and should not be undertaken.

2.1.2 DCF Inputs

The DCF method discussed above is simple to compute given all the input values, but esti-

mating these inputs is a challenge. In this subsection we take a look at the DCF inputs, their

assumptions and how they are obtained.

Free Cash Flows

The cash flows of a project refer to the money going in and out as a consequence of its un-

dertaking. This is by far the most important and most difficult input to estimate in DCF

analysis. Cash flows are estimated from the projected income statement based on management

perceptions about future costs, revenue, expenses, competition, and all other market conditions

pertinent to the project [29]. As such these values are simply the best guess estimates based on

currently available information and perceptions of management [27]. Cash flows are different

from accounting income, this is because of accrual accounting. Nonetheless cash flows can be

extracted from the income statement very easily using the following formula:

E[C] = Net Income + Non-Cash Expenses

= Net Income + Depreciation + Amortization

Due to the stochastic nature of the business firmament, estimating this input is very difficult

hence the values obtained are expected values rather than an actual values. This means cash

flows could be higher or lower and the degree of variation is dependent upon the volatility of

these cash flows. However as [27] said
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“DCF calculations do not call for accurate forecasts, but accurate assessments of

the mean of possible outcomes.”

Methods used to obtain these forecasts include regression, time series models, e.t.c.

Risk Adjusted Discount Rate (RADR)

This figure represents the time value of money and risk associated with a project. The most

commonly used discount rate is the weighted average cost of capital (WACC). It is this discount

rate that we will use throughout this dissertation. The cost of capital is the cost of financing

an organization’s projects, which is normally done through some optimal mix of both debt and

equity [7]. Hence,

WACC = wdkd(1− tax) + wcekce + wpskps (2.3)

where w represents the weights of common equity ce, preferred stock ps, debt d (i.e. the various

sources of capital), and k represents capital.

In order to compute a project’s WACC, we must first determine the cost of equity, cost of

debt, cost of preferred stock. The cost of equity is particularly difficult to quantify owing to

the models used to compute it like the capital asset pricing model (CAPM), arbitrage pricing

models (APM) and multi-factor models (MFM). We will focus on the CAPM as it is the most

widely used. We give the formula below:

Cost of Equity = Risk Free Rate + Beta*Expected Risk Premium

= Rf + β ∗ (E[Rm]−Rf )

Beta (β)

The beta in the above formula is the sensitivity factor. It measures the impact of market

fluctuations (i.e. interest rate changes, inflation, exchange rate risk, e.t.c) on the value of the

project. In the CAPM, a single beta value is calculated, whilst the MFM and APM require

the calculation of several of these β’s (i.e measures of sensitivity of the asset with respect to

market factors like interest rates, inflation, country risk, default risk e.t.c.). The higher the β

the greater the sensitivity to market fluctuations.

“In financial assets, we can obtain beta through a calculation of the covariance

between a firm’s stock prices and the market portfolio, divided by the variance of the

market portfolio. Beta is then a sensitivity factor measuring the co-movements of

a firm’s equity prices with respect to the market. The problem is that equity prices

change every few minutes! Depending on the time frame used for the calculation,

beta may fluctuate wildly. In addition, for non-traded physical assets, we cannot

6



reasonably calculate beta this way. Using a firm’s tradable financial assets’ beta as

a proxy for the beta on a single non-traded and non-marketable project within a

firm that has many other projects is ill advised [29].”

In light of this, a project specific β needs to be calculated. We outline the method for deter-

mining a project specific β.

1. Locate suitable proxy companies. The proxy companies are firms whose line of business

is similar to the project being undertaken.

2. Determine the equity betas of the proxy companies, their gearings and tax rates. The

equity betas include both business risk and financial risk.

3. Ungear the proxy equity betas to obtain asset/project betas. Ungearing allows us to

remove the financial risk of each firm to obtain asset beta which shows us business risk

or project risk.

4. Calculate an average asset beta. This is the beta we use in the cost of equity calculation.

Risk-free rate

It is the interest rate of a risk-less asset (usually a government Bond with a similar duration as

the project). The coupon rate of a government bond is used if the credit spread of the bond is

zero, if it is non zero then the risk-free rate is given by:

Risk-free rate = Coupon rate − Credit Spread

The credit spread for government bonds can be found from ratings agencies like Moody’s, S&P

and Fitch.

Project lifetime

This is a value that represents how long management expects that project to be generating

cash flows. This is dependent on the intrinsic nature of the asset or project being valued e.g.

in mining it depends on production rate and on the mineable reserve.

2.1.3 Internal Rate of Return (IRR)

The internal rate of return is a capital budgeting metric that measures the efficiency of an

investment. The IRR is based of the NPV method. In fact the IRR is that discount rate that

would make NPV equal to zero. Equivalently, it can be defined as the break-even discount

ratio. IRR is given by:

IRR ⇒
N∑
t=1

E[Ct]

(1 + IRR)t
−

N∑
t=1

Implementation Costt
(1 + rf)t

= 0 (2.4)
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Decision Rule

If the IRR > the discount rate and NPV > 0, then invest.

If the IRR < the discount rate and NPV < 0, then do not invest.

The NPV method gives the value in absolute value terms (i.e currency) whilst the IRR gives the

rate of return of the project, i.e., it measures ‘the bang per buck’ of an investment opportunity.

The underlying assumption in IRR method is that project cash flows are reinvested at the IRR

which is impractical and unrealistic. There is also the computational issue of obtaining multiple

IRR’s, this is problematic because the question becomes, ‘which IRR is appropriate?’

2.1.4 Modified Internal Rate Of Return (MIRR)

The MIRR is an augmentation, a ‘little tweak’, to the traditional IRR. It seeks to solve two key

issues inherent in the IRR as discussed in 2.1.3. In the MIRR, positive cash flows are reinvested

at the firm’s cost of capital and initial outlays are financed at the firm’s financing cost whereas

in the IRR it is assumed that cash flows are reinvested at the project’s IRR, which is unrealistic.

The solution obtained in the MIRR computation is unique, thus solving the issue of multiple

IRR’s. The MIRR is simple to compute, the formula is given below:

MIRR = n

√
FV (Positive cash flows, cost of capital)

PV (Initial Outlays, F inancing Cost)
(2.5)

where n is the number of periods; FV is the future value of positive cash flows at the cost of

capital, PV is the present value of all negative cash flows at the projects financing rate.

Another advantage of the MIRR is that it can be used to rank projects of unequal sizes.

Advantages of the DCF

We list the following advantages of DCF as given by [30] below:

1. Clear, consistent decision criteria for all projects.

2. Same results regardless of risk preferences of investors.

3. Quantitative, decent level of precision and economically rational.

4. Not as vulnerable to accounting conventions (depreciation, inventory valuation).

5. Factors in the time value of money and basic risk factors.

6. Relatively simple, widely taught and widely accepted.

7. Simple to explain to management.

8



Weakness of the DCF

Like any model, the DCF is only as good as its assumptions or how well its assumptions reflect

reality. In the words of Nobel Laureate Robert Solow:

“All theory depends on assumptions which are not quite true. That is what makes

it theory. The art of successful theorizing is to make the inevitable simplifying

assumptions in such a way that the final results are not very sensitive. A ‘crucial’

assumption is one on which the conclusions do depend sensitively, and it is important

that crucial assumptions be reasonably realistic. When the results of a theory seem

to flow specifically from a special crucial assumption, then if the assumption is

dubious, the results are suspect.”

In light of this, we need to investigate the assumptions of the DCF and how they compare with

business reality. Table 2.1 below compares the DCF assumptions to business reality. This table

was adopted from [30].

The DCF apparatus is predicated on the idea that real investment projects are analogous to

a portfolio of risk-less bonds [33]. This is clearly demonstrated by the similarity of the NPV

formula and bond valuation formula. There are two key differences between the NPV formula

and the risk-free bond valuation formula, these are:

• The bond valuation formula uses coupon payments instead of expected cash-flows which

are used in the NPV formula. Coupon payments unlike project cash-flows are determin-

istic and known.

• The discount rate used in the bond valuation formula is the risk-free rate of return whereas

RADR is used in the case of risky cash-flows of the NPV formula.

In the absence of managerial flexibility, this analogy holds and the two augmentations to the

risk-free bond valuation formula are appropriate. But the reality is that management might find

that they have the capacity to alter their operating strategy during the life of the project [47]. In

particular, if market conditions are below expectations, management might have the flexibility

to contract, temporarily shutdown, or abandon the project for salvage value depending on the

degree of austerity of market conditions. If however, market conditions are above expectations,

management might have the flexibility to expand operations. This ability to revise operating

strategy changes the overall risk structure of the project. Flexibility introduces skewness in

the probability distribution of asset returns since downside risk is limited, this is illustrated in

Figure 2.1. The expected return (NPV) of the project is shifted to the right and project value

is expanded [44]. The extra value is flexibility value. DCF ignores this extra component of

value.

9



Assumptions Realities
Decisions are made now and future cash
flows are fixed for the future

Uncertainty and variability in future out-
comes. Not all decisions are made today as
some may be deferred to the future, when
uncertainty becomes resolved

Projects are “mini firms” and they inter-
changeable with whole firms

With the inclusion of network effects, di-
versification, inter-dependencies, synergy,
firms are portfolios of projects and their re-
sulting cash flows. Sometimes projects can-
not be evaluated as stand-alone cash flows

Once launched, all projects are passively
managed

Projects are usually actively managed
through project life-cycle,including check-
points, decision options, budget constraints
e.t.c

Future free cash flow streams are all highly
predictable and deterministic

It may be difficult to estimate future cash
flows as they are usually risky and stochas-
tic in nature

Project discount rate used is the opportu-
nity cost of capital which is proportional to
non-diversifiable risk

There are multiple sources of business risk
with different characteristics, and some are
diversifiable across time and projects.

All risks are completely accounted for in the
discount rate

Firm and project risk can change over the
course of a project

All the factors that could affect the outcome
of the project and the value to the investors
are reflected in DCF though NPV or IRR

Because of project complexity and so called
externalities, it may be difficult or impos-
sible to quantify all factors in terms of
incremental cash flows. Distributed, un-
planned outcomes (e.g. strategic vision and
entrepreneurial activity) can be significant
and strategically important

Unknown, intangible or immeasurable fac-
tors are valued at zero

Many of the important benefits are intangi-
ble assets or qualitative strategic positions

Table 2.1: Disadvantages of DCF: Assumptions Vs Realities

Figure 2.1: Symmetric Vs Asymmetric Distribution
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Another weakness of the DCF is that it does not take into account the time series inter-

dependencies of projects. These inter-dependencies introduce a compoudness in projects where

one project is a necessary prerequisite to taking another project, these are called sequen-

tial/growth options. This might justify taking negative NPV projects as they might provide

firms with growth options (access to new markets, technologies and business) [27]. This in-

cludes R&D projects where capital can be invested for many years without any returns or even

worse negative returns but a single break though could mean super-normal returns [31].

[27] describes situations where DCF may be appropriately applied in finance and where it

might not be appropriate and gives the corporate analogue. We present this in Table 2.2

below:

DCF Application in Finance Corporate Analogue

DCF is standard for valuing bonds, pre-

ferred stocks and other fixed income se-

curities

DCF is appropriate in valuing of safe cash-flows

from contracts like financial leases.

DCF is sensible and widely used for

valuing relatively safe stocks paying

regular dividends

DCF is readily applied to cash cows - relatively

safe businesses held for the cash they generate

rather than for strategic value. It also works for

capital investments like machine replacement

where benefit is reduced cost in a clearly de-

fined activity

DCF is not very useful in valuing com-

panies with significant growth opportu-

nities.

Capital investment projects/business that have

significant opportunities in terms of growth

prospects are not valued well under the DCF

method

DCF method is not designed to value

financial contingent claims

R&D, intangible assets are mainly option value.

This option value can also be found in mining

leases, the option value comes from the flexibil-

ity that the owners of the lease have to defer

investment until the have observed the extent

of mineral reserves as well as market conditions

Table 2.2: Application Of DCF in Finance and Corporate Analogue

In summary, when the following conditions are present in a project:

• high levels of uncertainty and

• a management that posses the flexibility to adapt and alter their operating strategy,
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option value is created. This means that projects cannot be valued on a cash flow basis alone

but the valuation must also capture the extra component of value brought about by managerial

flexibility, i.e., the flexibility value which Stewart C. Meyers in [27] referred to as the real option

value. An expanded NPV must therefore be calculated to capture both aspects of project value:

Expanded NPV = NPV from Cash flows + Real Option Value (2.6)

The question is, how do we capture this extra component of value? Before we endeavor to

answer this question, we will look at other traditional methods of valuation and then survey

the various methods that have been proposed to capture this extra component of value.

2.2 Other Traditional Methods

2.2.1 Payback Period

Another capital budgeting method is the payback period. The payback period is the number of

years required to recover the initial investment outlay. If the investment consists of a series of

cash outflows followed by a series of cash inflows (C0, C1, C2, · · · , Ct) and (Ct+1, Ct+2, · · · , CN),

the first k for which −
t∑

s=0

Cs ≤
k∑

r=t+1

Cr is the payback period [2].

This payback period is not time weighted hence it does not account for risk and time value of

money. When we factor in risk and time value of money which is captured in a discount rate

(e.g. WACC or some hurdle rate decided on by management) and time weight the cash flows,

this is called the Discounted Payback Period. In this case, the payback period is the first k for

which

−
t∑

s=0

Cs × vsi ≤
k∑

r=t+1

Cr × vri

where vsi is the discount factor of project inflows which are discounted at RADR and vri is the

discount factor of cash outflows which are discounted at the risk-free rate.

2.2.2 Return On Investment (ROI)

Return on investment (ROI) is an accounting measure of investment return. It measures the

efficiency of a project. The formula is given below

ROI =
(Gains from Investment − Investment Cost)

Investment Cost
(2.7)

Unlike DCF methods ROI does not factor in the the time value of money as well as the

risk associated with the project under consideration. Furthermore unlike DCF, ROI does
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not measure returns in terms of cash flows but accounting returns hence the value obtained

is contaminated by the standard accrual accounting methodology and does not truly reflect

returns of an investment.

2.3 Monte Carlo Simulation, Probabilistic Scenario Anal-

ysis And Decision Trees

Contrary to the assumptions of DCF and traditional capital budgeting scheme, the business

environment is fraught with uncertainty and requires active management to traverse this world

that is in a continual state of flux. To account for uncertainty, error in the estimation of DCF

inputs as well as management flexibility, methods such as sensitivity analysis, scenario analysis,

Monte-Carlo simulation as well as decision tree analysis are employed. In this section we look

at these methods and how they are used as well as the shortcomings of each methodology.

2.3.1 Sensitivity Analysis

Sensitivity analysis (SA) is a typical technique used to quantify the impact of parameter un-

certainty on overall simulation/prediction uncertainty (Helton, 1993; Saltelli et al., 2000) [50].

The sensitivity, S, of a parameter, P , is defined below as follows:

S =
∂x/x

∂P/P
(2.8)

where x is the state variable under consideration. Sensitivity analysis is a powerful tool for

examining issues relating to uncertainties in model structure, or in input or parameter values

[23]. The inputs of a model are the proposed values of any parameter or state variable whose

true value is uncertain/unknown. According to [23], the objective of sensitivity analysis is

three-fold:

1. to estimate the uncertainty in the model’s predictions caused by uncertainty in the values

of inputs.

2. to examine the consequences of varying the model’s structure on its generality and pre-

dictive power.

3. to determine the degree to which inaccuracies in their assumed values could lead to serious

errors in prediction.

The first and third point are of particular interest in financial modelling specifically capital

budgeting as most of the model parameters (inputs) cannot be known with certainty. Sensitivity

Analysis is a tool used in financial modeling to analyze how the different values of a set of

independent variables affect a specific dependent variable under certain specific conditions. It

is the case in capital budgeting that
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“...the estimates of cash flows used in capital budgeting are invariably derived

from (oftentimes most likely) forecasts of other primary variables (the project’s life,

salvage value, production costs, the price of the product, the size and growth of the

market, the firms market share,etc.)” [47]

It behooves the prudent analyst to carry out a sensitivity analysis on the discounted cash flow

model. Setting the cash-flows, NPV or IRR as the resulting variables, we then perturb each

precedent variables or parameter and note the change in the resulting variables. The precedent

variables include revenues, costs, tax rates, discount rates, capital expenditures, depreciation,

and so forth (in other), which ultimately flow through the model to affect the cash-flow, net

present value or IRR figure [31]. Each variable is perturbed and varied by a predefined amount

and the resulting change in net revenues is captured. This approach is great for understanding

which variables drive or impact the bottom line the most. The uncertain key variables that

drive the net present value and, hence, the decision are called critical success drivers.

Tornado Diagram

The results of a sensitivity analysis can be represented graphically on a diagram known as a

tornado diagram. This diagram lists the precedent variables in descending order of magnitude,

i.e. from the most sensitive variables at the top to the least sensitive at the bottom. The degree

of magnitude on a resultant variable is represented by the length of the bars going to the left

and the right to show impact of precedent variable when each precedent variable is increased

and decreased by a certain amount. The greater the impact, the longer the bars, hence the

chart has the longest bars at the top and the shortest at the bottom, giving it the tornado like

shape.

2.3.2 Scenario Analysis

Scenario Analysis is a capital budgeting tool used to analyse investment projects by consid-

ering multiple probable circumstances and observes how the project performs under each of

these scenarios. In scenario analysis, we estimate expected cash flows and asset value under

various scenarios, with the intent of getting a better sense of the effect of risk on value. Unlike

sensitivity analysis where only a single input is altered and the rest held constant, scenario

analysis allows the analyst to alter all the relevant inputs to align with an alternate reality.

The most basic scenario analysis has two scenarios, that is, the best case scenario, and worst

case scenario. According to [8] this can be carried out in two ways:

Method 1

The inputs in the DCF can all be set to their most optimistic (best case) values for the best

case scenario and set to their most pessimistic (worst case) values for the worst case scenario.

Performing the analysis this way may be infeasible as it does not consider inter-dependencies

14



between inputs e.g a firm may need to lower prices to increase revenue while lowering margins.

Method 2

Under this method inter-dependencies between variables are considered and the best case and

worst case scenarios are defined in terms of what is realistic (feasible) hence we look for a

combination of inputs that maximize value e.g. find a combination of growth and margin that

maximizes value for the firm.

This basic type of scenario analysis allows firms to determine the riskiness of an asset by taking

the difference between the best and worst case scenario adjusted to size. It also allows firms

that are concerned about potential spill over effects of an investment to gauge the impact of

the investment going bad on their operations by using the worst case scenario.

The basic 2 state scenario analysis can be extended to include multiple scenarios. In its most

general form, the value of a risky asset can be computed under a number of different scenarios,

varying the assumptions about both macroeconomic and asset-specific variables [8]. Below is

an outline of how to carry out a multiple scenario analysis, this step by step outline is sourced

from [8].

Step 1 Decide which factors the scenarios will be built around: This can be done though the aid

of sensitivity analysis.

Step 2 Determine how many scenarios to analyze for each factor.

Step 3 Estimate asset cash flows under each scenario.

Step 4 Assign probabilities to each scenario.

These scenarios and probabilities can then be used to determine an expected NPV if the

scenario’s are exhaustive (i.e. if the scenario’s account for all the possible combinations

of inputs, or simply put the probabilities sum up to one). Creating and analyzing project

value under an exhaustive list of possible outcomes is nigh impossible without computa-

tional methods line Monte-Carlo simulation which we deal with in the next section. This

is especially true if input values are random variables that take values on a continuous

time scale (i.e. face continuous uncertainty)

Although scenario Analysis allows us to vary multiple inputs and observe how the project

behaves in different situations, it still does not account for managerial flexibility. Moreover

scenario analysis is better suited for dealing with risk that takes the form of discrete outcomes

than risk that takes value on a continuum. An example of the former is a shift in regulatory

rules, changes in margins or market share are an example of the latter [8]. Evidently this is

a major reason why it is difficult to create an exhaustive list of possible scenario’s and obtain

an expected NPV. Most input values do not take discrete values but take on values on a
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continuous scale, each with its own probability distribution, scenario analysis then falls short

since we cannot see the full range of possible outcomes.

2.3.3 Monte Carlo Simulation

A simulation is an approximate imitation of the functioning of a process or system by means

of the functioning of another [17]. According to Naylor et al in [36],

“Simulation is a numerical technique for conducting experiments on a digital com-

puter, which involves certain types of mathematical and logical models that describe

the behaviour of a business or economic system (or some component thereof) over

extended periods of time.”

We can simulate both deterministic and probabilistic system. One method for performing

these simulations is the Monte Carlo Method (also known as the method of statistical trials).

According to [31], Monte Carlo is a stochastic tool that helps people think probabilistically

and not deterministically (in terms of certainty). This is very important especially in the field

of finance and business which is fraught with uncertainty. Probabilistic models are useful for

critical situations only, that is, situations where deterministic models are inefficient or irrelevant

[13]. These situation are ubiquitous in finance, the fundamental sciences and engineering. But

what is Monte Carlo Simulation? According to [3]

“Monte-Carlo simulation consists of solving various problems of computational

mathematics by means of the construction of some random process for each such

problem, with the parameters of the process equal to the required quantities of the

problem. These quantities are then determined approximately by means of obser-

vations of the random process and the computation of its statistical characteristics,

which are approximately equal to the required parameters.”

This process is carried out by computers. Since computers are deterministic, how then does

it generate random events (random numbers)? Since computer programs simply execute al-

gorithms, given an initial result, we are able to guess the outcome from the onset. This is at

odds with random number generation. Therefore the key problem in Monte Carlo simulation

is creating a computer algorithm that is chaotic enough to produce unpredictable results, i.e.

from the observers point of view [15].

Thus, to build a dynamically chaotic algorithm is sufficient to generate random

events[15].

These algorithms are called pseudo-random number generators. Pseudo random numbers are

collections of numbers that are produced by a deterministic algorithm and yet seem to be ran-

dom in the sense that, en masse, they have appropriate statistical properties [14]. [15] shows

how uniform random variables can be used to generate random variables for which we know the
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distribution of. This then simplifies the problem of generating random variables on computer to

generating a uniform random variable. In order to generate a uniform random variable without

resorting to a complex chaotic dynamic, all we need to do is to build an algorithm such that the

generated result has the statistical regularity of a uniform random variable [15]. The details of

how to generate these Uniform Random variables can be found in [3], [15] and [36].

[36] list some reasons why simulation might be appropriate, we list some of them below:

• Simulation makes it possible to study and experiment with complex internal interactions

of a given system whether it be a firm, an industry, an economy, or some subsystem of

one of these.

• Through simulation we can study the effects of certain informational, organisational, and

environmental changes on the operation of a system by making alterations in the model

of the system and observing the effects of these alterations on the system’s behaviour.

• Detailed observation of the system being simulated may lead to a better understanding

of the system and to suggestions for improving it, suggestions that otherwise would not

be apparent.

• Simulation of complex systems can yield valuable insight into which variables are more

important than others in the system and how these variables interact.

• Simulation can be used to experiment with new situations about which we have little or

no information so as to prepare for what may happen.

• Simulation can be used as a pedagogical device to reinforce analytical solution method-

ologies.

Monte Carlo Simulations have a wide range of application and are used in diverse fields; from

Neuroscience to engineering, from physics to finance. [36] and [13] outlines situations where

simulation is appropriate:

• It may be impossible or extremely expensive to obtain data from certain processes in the

real world. This includes situations like the effect of tax cuts in the economy, the effect

of an advertising campaign on total sales [36].

• The observed system may be so complex that it cannot be described in terms of a set

of mathematical equations for which analytic solutions are obtainable. Most economic

systems fall into this category [36].

• Simulation can be used in situations where a mathematical model can be used to model

a system of interest, but it may be difficult to find solutions by straight forward analytic

techniques. Economic systems fall into this category [36].
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• It may be either impossible or very costly to perform validating experiments on the

mathematical models describing the system. Alternative hypotheses can be tested by the

simulation data [36].

• A physical experiment which can be described by well-established physical laws, but for

which certain model parameters are difficult to calibrate with accuracy [13].

• A physical experiment which can be described by well-established physical laws, but which

is submitted to a huge number of rapidly and unpredictably varying forces [13].

• A phenomenon driven by incompletely known physical laws [13].

• A phenomenon which is not driven by physical laws and involves a huge number of

heterogeneous sources of changes [13].

Probability theory allows us to model complex phenomena whose states cannot be precisely

deduced from accurate measurements. Classical methods cannot be used such phenomena.

Stochastic modeling involves the choosing of probability distributions of the inputs in the

system and aims to compute the probability distributions of important characteristics of the

phenomena under consideration. In the simplest sense, Monte Carlo simulation creates arti-

ficial futures by generating many sample paths of outcomes (thousands into the hundreds of

thousands even) and analyzes their prevalent characteristics [31]. A simulation calculates nu-

merous scenarios of a model by repeatedly picking values from a user-predefined probability

distribution for the uncertain variables and using those values for the model [31]. As all those

scenarios produce associated results in a model, each scenario can have a forecast. Forecasts are

events (usually with formulas or functions) that you define as important outputs of the model.

In finance, particularly in the traditional capital budgeting scheme, Monte Carlo Method is

used to simulate cash flows or NPV’s of a capital investment project [47]. Cash flows or NPV’s

are set as outputs of the system, the probability distributions of the crucial primary variables

are preset, along with the formula’s defining the inter-dependencies and correlations between

system inputs. The simulation is then run which yields a distribution of the output variables.

However, Monte Carlo simulation is not without its shortcomings. [47] lists the following:

• It may be difficult to capture all the inter-dependencies of inputs even if analysts are

unbiased. Expert help may be needed to capture this complexity.

• If the simulation outcome is a distribution of NPV’s, it is not clear what discount rate

should be used, the meaning of this distribution becomes unclear. Moreover we can no

longer think of the present value of a project to be the price a project would command

under perfect capital markets.

• There is no rule for translating the probability distribution of NPV into clear cut decision.
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• There exists the temptation for simulation users to use the variance of project outcomes

as a measure of risk. This variance is a measure of the projects total risk.

• The extreme values of simulated outputs are unreliable

• Simulation does not factor in managerial flexibility (i.e. managements ability to review

their initial operating strategy) in its calculations, it follows the predefined operating

strategy built into it from the onset and blindly follows this predefined strategy.

2.3.4 Decision Tree Analysis (DTA)

The major limitation of DCF as mentioned in previous sections is its inability to factor manage-

rial flexibility (i.e. the ability of managements to make mid course corrections), this flexibility

introduces asymmetry in project returns. The asymmetry adds an extra component of value

which we call the “real option value”, this option value is not captured by standard DCF

techniques. For this reason decision tree analysis (DTA) has been traditionally used to evaluate

projects with uncertain cash flows when the decision maker can follow more than one decision

path [49].

“DTA helps management structure the decision problem by mapping out all feasible

alternative managerial actions contingent on the possible states of nature (chance

events) in a hierarchical manner. As such it is particularly useful for analyzing

complex sequential investment decisions when uncertainty is resolved at distinct,

discrete points in time [47].”

A decision tree is a pictorial representation of the decision paths managements can take and

how they respond to different outcomes in the market.

According to [8] a decision tree is made up of multiple nodes, these are:

1. Root Node is the beginning of a decision tree where management faces an uncertain

outcome or decision choice. It is the goal of the analysis to determine what the value of

the an investment is at this point.

2. Decision Node are points where a decision maker chooses among possible (alternative)

routes contingent on the outcomes of previous decisions.

3. Event Nodes are the possible outcomes of risky gamble.

4. End Nodes represent the final outcomes of prior investment decisions in response to chance

events.

[47] mentions only two nodes (i.e. decision points) which are the decision node, i.e., the decision

points under the control of management; the other is the event node (which he calls the outcome
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node) which are the decision points for “nature” and the decision maker has no control over

these outcomes. The decision maker is like a supplicant waiting for the judgment of a most

unpredictable whimsical god,“nature”, and makes do with what he is given. In the words of

[47],

“It is as if management is playing a “game” (say, chess) against nature, taking

turns to make their “moves”. (Nature, of course is the unthinking opponent making

its moves randomly so such a game against nature presents management with an

optimization problem,...)”

[9] outlines steps to creating a decision tree, which are given below:

1. Divide analysis into risk phases: This is a critical step in decision tree analysis where you

outline all the risks you will encounter in the future.

2. In each phase, estimate the probabilities of the outcomes: these probabilities should add

up to 1.

3. Define decision points: At these points managements determines best course of action

based on previous decisions and their outcomes as well as expectations about future

outcomes.

4. Compute cash flows/value at end nodes: cash flows are estimated at each end node and

then discounted to arrive at a present value.

5. Fold back the tree: this is the final step in decision tree analysis where expected values

are computed by working backwards in the tree. At an event node the expected value

is a weighted probability average of the different outcomes. At a decision node however

the expected value is computed for each branch and the greatest value among the various

expected values is chosen, this is the optimal decision.

Consider the following simple example. You are offered a choice of accepting P65 now or

partaking in a gamble in which you have a 60% chance of winning P110 and a 40% chance of

winning P55 which you will receive a year later, the risk free rate is 10%. Figure 2.2 below

shows the decision tree for this offered gamble.
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E[V ] = P80

P55

60%

40%

P110
1.1

= P100

P55
1.1

= P50

Figure 2.2: Simple Decision Tree

Where the green circle represents the root node, yellow circle represents decision node, blue

circle represents event nodes and red circles represent end nodes.

DTA views chance events as though they occurred at discrete points in time whereas reso-

lution of uncertainty might take place continuously over time. The main shortcoming of the

DTA method is in determining the appropriate discount rate used in folding back through

the decision tree where present values of the investment are computed [27]. Since managerial

flexibility introduce asymmetry in project returns and changes the overall risk structure, pru-

dence demands the analyst to compute a new discount rate which reflects the change in the

risk profile [47]. In the example above the risk free rate is used because no risks are faced and

thus we only need to account for the time value of money. This is not the case in complex,

volatile capital investments which are subject to market forces like interest rate, exchange rate,

demand fluctuations e.t.c. [27] in his ground breaking work was the first to point out that the

tools for capturing these “options” in capital investment could already be found in contingent

claims analysis (options pricing). Managerial flexibility creates an extra component of value

which he called the real option value . He argued that the tools of financial options pricing

theory could be applied to capital investment projects to value these real options. In the next

sections we review options pricing theory and how it can be applied to real assets.
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Chapter 3

Review Of Option Pricing

Methodology

Definition 1. An option is a security giving the right to the holder buy or sell an asset, which

is called thee underlying, subject to certain conditions, within a certain period of time. These

conditions include:

C1 Expiration Date denoted (T ) refers to the last day on which the option can be exercised.

C2 Strike Price denoted (K) is the price that is paid for the underlying at the time of exercise.

C3 Terms of exercise.

There are two basic types of options, these are:

• Put option, P (S, t), which gives the holder the right to sell the underlying asset subject

to C1, C2 and C3.

• Call option, C(S, t), which gives its holder the right to buy the underlying asset, subject

to C1, C2 and C3.

Puts and calls are collectively called plain vanilla options, this is due to the simple nature of

their payoffs.

Definition 2. The style of the option refers to the terms of exercise or exercise rules which

are outlined in the option contract which along with the strike price (K), and expiration date

constitute the option. There are two main styles of options, these are:

• European Style Options: These options can only be exercised at the maturity date Tof the

option.

• American Style Options: These options can be exercised at any time upto and including

its expiration date T .
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There are many more styles of options which are basically hybrids of the two main styles, these

include Bermudian, canary, Verde options e.t.c.

Definition 3. The Option Premium is the price paid for an option.

Options provide limited downside risk for the holders of these contracts but unlimited upside

benefit. This is why an option premium is charged. The question is how to price these unique

derivatives. Options pricing theory is a framework used to determine this price.

There are several methods used to determine the price of an option, these include:

• lattice Methods e.g. Cox, Ross and Rubinstein (CRR) Binomial Model.

• Closed form solutions e.g. Black-Scholes-Merton (BSM) model

• Partial differential equations

• Variance reduction techniques

• Monte-Carlo methods

We will focus on lattice metods, specifically the CRR binomial model and the closed for,

solution of the BSM. We begin with a discussion of the one-period binomial model and extend

these ideas to the multi-period case, we will then look at the celebrated Black-Scholes-Merton

formula. Convergence of the CRR to the BSM is then shown. We then extend the BSM and

CRR to allow for dividends to conclude our discussion on options pricing.

3.1 Binomial Options Pricing Model

In this section we discuss the Binomial options pricing Model which was developed by Cox,

Ross and Rubinstein in their journal article Options Pricing: A simplified Approach. We first

list the assumptions underlying this model below:

A1 No market frictions.

A2 No credit risk.

A3 Competitive and well-functioning markets.

A4 No intermediate cash flows (no dividends).

A5 No arbitrage opportunities.

A6 No interest rate uncertainty i.e. interest rates r remain constant.

A7 Underlying Asset follows a binomial process which means trading occurs at discrete points

in time and at each discrete point asset will either move up by some factor U > 1 with

probability p or down by some factor D > 0 with probability (1− p)
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We begin our discussion of the single period model, which gives us intuition and sets a good

foundation for the underlying economics and ideas used to price options. We then extend

the one period model to the more complex multi-period model as discussed by Cox, Ross and

Rubinstein.

3.1.1 Single Period Binomial Model

Under the CRR assumptions, we describe and define all the necessary objects of our model

below.

Definition 4. A market in the one-period model consists of two (n+ 1)-dimensional vectors

X(0) = (X0(0), X1(0), · · · , Xn(0)) and X(T ) = (X0(T ), X1(T ), · · · , Xn(T ))

where X0(t), X1(t), · · · , Xn(t) represent the prices of n+ 1 securities at time t = 0 and t = T .

X0(t) represents the price of a safe investment (risk-free bond) and X1(t), · · · , Xn(t) represent

the prices of n risky assets.

Definition 5. A portfolio in the one-period model is an (n + 1)-dimensional deterministic

vector

θ = (θ0, θ1, · · · , θn)

where θi represents the number of units held in security i at time t = 0; i = 0, 1, · · · , n

Definition 6. The value of a portfolio at time V θ(t), is given by

V θ(t) = θ ·X(t) =
n∑
i=0

θiXi(t)

Definition 7. An arbitrage opportunity is a portfolio θ such that

1. V θ(0) = 0

2. V θ(T ) ≥ 0

3. EP[V θ(T )] > 0, where P is a probability measure.

Model Specification

• Let T = 1

• There are three securities in our market, namely:

– A stock (risky asset) denoted S(n, j).

– A Bond (risk free asset) β(n, j).
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– A Contingent Claim (derivative asset) which we denote as W (n, j).

where n represents the nth time step, and j represents number of up moves (hence de-

scribes the state of the security); (n, j) represents the state of the security at the nth time

step. For the one period model n = 1 and j ∈ {0, 1}.

• The time t = 0 price of the stock is is S(0, 0) (which is known) and the time t = 1

price of the stock S(1, j) which assumes one of two possible values, S(1, 1) = US(0, 0)

with probability p, i.e., the price of the stock in the upstate or S(1, 0) = DS(0, 0) with

probability (1− p), i.e., the price in a down state.

S(0,0)

US(0,0)

DS(0,0)

t = 0 t = 1

Figure 3.1: 1-Period Binomial Model

• The time t = 0 price of the bond is β(0, 0) and the time t = 1 price is Rβ(0, 0); where

R = er·1.

• V θ(n, j) denotes wealth of the investor in state j at the nth time step.

Theorem 3.1.1. There is no arbitrage in our market if the following inequality is satisfied

0 < D < R < U.

Proof. By definition we have that U > D > 0. Now if we let D ≥ R then we could sell a bond

β with interest rate r and use the funds to purchase stock, in this case we are assured that even

if the stock moves down we will have enough to cover our debt (i.e. payoff the bond) at t = 1

this implies that to prevent arbitrage D < R If we let U < R We can short sell the stock and

invest in the bond at t = 0 which will always outperform the stock, we will receive Rβ at t = 1

which we can use to buy back the stock and return it to its owner. This results in a riskless

gain, thus we require that R < U .

Hence we have the result.
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Theorem 3.1.2. Let CRR assumptions hold and 0 < D < R < U . Then the time t = 0 price

of a European Option in the One period Binomial Model is

V θ(0, 0) =
1

R
[πW (1, 1) + (1− π)W (1, 0)].

Proof. Beginning with an initial wealth V θ(0, 0), we purchase ∆0 shares leaving us with a cash

position of V θ(0)−∆0 which is invested in bonds. Hence, our portfolio at time t = 0 is given

by

θ =

(
V θ(0, 0)−∆0

β(0, 0)
,∆0

)
where β(0, 0) is the price of a bond at t = 0 Our time t = 1 wealth (value of our portfolio) is

V θ(1, j) = R(V θ(0, 0)−∆0S(0, 0)) + ∆0S(1, j).

We want to choose V θ(0, 0) and ∆0 such that W (1, 1) = V θ(1, 1) and W (1, 0) = V θ(1, 0),

replication of the contingent claim requires that

W (1, 1) = R(V θ(0, 0)−∆0S(0, 0)) + ∆0S(1, 1)

W (1, 0) = R(V θ(0, 0)−∆0S(0, 0)) + ∆0S(1, 0)

which can be rewritten as

1

R
W (1, 1) = V θ(0, 0) +

(
1

R
S(1, 1)− S(0, 0)

)
∆0; (3.1)

1

R
W (1, 0) = V θ(0, 0) +

(
1

R
S(1, 0)− S(0, 0)

)
∆0. (3.2)

We have a system of two equations and two unknowns which we solve by elimination. Sub-

tracting 3.2 from 3.1, we have

W (1, 1)−W (1, 0)

R
=

(
S(1, 1)− S(1, 0)

R

)
∆0

∆0 =
W (1, 1)−W (1, 0)

S(1, 1)− S(1, 0)
. (3.3)

Substituting 3.3 into 3.1 gives
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1

R
W (1, 1) = V θ(0, 0) +

(
1

R
S(1, 1)− S(0, 0)

)
W (1, 1)−W (1, 0)

S(1, 1)− S(1, 0)
.

Solving for V θ(0, 0) gives

V θ(0, 0) =
1

R

[(
RS(1, 0)− S(1, 0)

S(1, 1)− S(1, 0)

)
W (1, 1) +

(
S(1, 1)−RS(0, 0)

S(1, 1)− S(0, 0)

)
W (1, 0)

]
.

Letting

π =

(
RS(1, 0)− S(1, 0)

S(1, 1)− S(1, 0)

)
; 1− π =

(
S(1, 1)−RS(0, 0)

S(1, 1)− S(0, 0)

)
we have

V θ(0, 0) =
1

R
[πW (1, 1) + (1− π)W (1, 0)]. (3.4)

3.1.2 Multi-period

We extend the ideas of one-period model here and provide justification for the options pricing

formula of Cox, Ross and Rubinstein. We describe the necessary objects for this exposition.

Model Specification

• Given the expiration date T , we define N as the number of steps and δt = T
N

as the step

size. There are N + 1 terminal nodes and 2N possible price paths.

• The price of a stock S(n, j) (risky asset) S(n, j) = S(0, 0)U jDn−j, where n represents the

number of time steps, and j represents number of up moves (hence describes the state

of the security); (n, j) represents the state of the security at the nth time step; where

n ∈ {0, 1, · · · , N} and j = 0, 1, · · · , n.

• R = erδt.

We illustrate a 3-period binomial model in Figure 3.2 below.
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S(0, 0)

US(0, 0)

DS(0, 0)

U2S(0, 0)

UDS(0, 0)

D2S(0, 0)

U3S(0, 0)

U2DS(0, 0)

UD2S(0, 0)

D3S(0, 0)

t = 0 t = 1 t = 2 t = 3

Figure 3.2: 3-Period Binomial Model

The pricing of a derivative instrument in the multi-period setting (i.e. with N time periods),

can be thought of solving n one-period binomial models backwards recursively in time at each

time step. We lay out the technical details below.

Theorem 3.1.3. Let the CRR assumptions hold and 0 < D < R < U . Then the arbitrage

price of a European Option W (n, j) in the binomial model is given by

W (n, j) =
1

RN−n

N−n∑
l=0

(
N − n
l

)
πl(1− π)N−n−lW (N, j + l).

Proof. We shall use mathematical induction.

For N = n+ 1

W (n, j) =
1

R
[πW (n+ 1, j + 1) + (1− π)W (n+ 1, j)] (3.5)

which is the one period binomial formula, hence shown for N = n+ 1.

For N = n+ 2

W (n, j) =
1

R
[πW (n+ 1, j + 1) + (1− π)W (n+ 1, j)] (3.6)

W (n+ 1, j + 1) =
1

R
[πW (n+ 2, j + 2) + (1− π)W (n+ 2, j + 1)] (3.7)

W (n+ 1, j) =
1

R
[πW (n+ 1, j + 1) + (1− π)W (n+ 1, j)] . (3.8)

Substituting 3.7 and 3.8 into 3.6 we have
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W (n, j) =
1

R2

(
π2W (n+ 2, j + 2) + 2π(1− π)W (n+ 2, j + 1) + (1− π)2W (n+ 1, j)

)
W (n, j) =

1

R2

2∑
l=0

(
2

l

)
πl(1− π)2−lW (N, j + l)). (3.9)

Assume true true for N = n+ k, i.e.

W (n, j) =
1

Rk

k∑
l=0

(
k

l

)
πl(1− π)k−lW (n+ k, j + l) (3.10)

Let N = n+ k + 1.

We have that

W (n+ k, j + l) =
1

R
[πW (n+ k + 1, j + l + 1) + (1− π)W (n+ k + 1, j + 1)] . (3.11)

Substituting 3.11 into 3.10 gives the following

W (n, j) =
1

Rk

k∑
l=0

(
k

l

)
πl(1− π)k−l

(
1

R
[πW (n+ k + 1, j + l + 1) + (1− π)W (n+ k + 1, j + l)]

)

W (n, j) =
1

Rk+1

[
k∑
l=0

(
k

l

)
πl+1(1− π)k−lW (n+ k + 1, j + l + 1)

+
k∑
l=0

(
k

l

)
πl(1− π)k+1−lW (n+ k + 1, j + l)

]
.
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W (n, j) =
1

Rk+1

[(
k

0

)
π1(1− π)kW (n+ k + 1, j + 1)

+

(
k

1

)
π2(1− π)k−1W (n+ k + 1, j + 2) + · · ·

+

(
k

k − 1

)
πk(1− π)1W (n+ k + 1, j + k)

+

(
k

k

)
πk+1(1− π)0W (n+ k + 1, j + k + 1)

+

(
k

0

)
π0(1− π)k+1W (n+ k + 1, j)

+

(
k

1

)
π1(1− π)kW (n+ k + 1, j + 1) + · · ·

+

(
k

k − 1

)
πk−1(1− π)2W (n+ k + 1, j + k − 1)

+

(
k

k

)
πk(1− π)1W (n+ k + 1, j + k)

]
.

Rearranging and collecting like terms, gives

W (n, j) =
1

Rk+1

[(
k

0

)
π0(1− π)k+1W (n+ k + 1, j)

+

{(
k

0

)
+

(
k

1

)}
π1(1− π)kW (n+ k + 1, j + 1)

+

{(
k

1

)
+

(
k

2

)}
π2(1− π)k−1W (n+ k + 1, j + 2)

+

{(
k

2

)
+

(
k

3

)}
π3(1− π)k−2W (n+ k + 1, j + 3) + · · ·

+

{(
k

k − 2

)
+

(
k

k − 1

)}
πk−1(1− π)2W (n+ k + 1, j + k − 1)

+

{(
k

k − 1

)
+

(
k

k

)}
πk(1− π)1W (n+ k + 1, j + k)

+

(
k

k

)
πk+1(1− π)0W (n+ k + 1, j + k + 1)

]
.

30



W (n, j) =
1

Rk+1

[(
k

0

)
π0(1− π)k+1W (n+ k + 1, j)

+

(
k + 1

1

)
π1(1− π)kW (n+ k + 1, j + 1)

+

(
k + 1

2

)
π2(1− π)k−1W (n+ k + 1, j + 2)

+

(
k + 1

3

)
π3(1− π)k−2W (n+ k + 1, j + 3) + · · ·

+

(
k + 1

k − 1

)
πk−1(1− π)2W (n+ k + 1, j + k − 1)

+

(
k + 1

k

)
πk(1− π)1W (n+ k + 1, j + k)

+
1

Rk+1

(
k

k

)
πk+1(1− π)0W (n+ k + 1, j + k + 1)

]
.

which simplifies to

W (n, j) =
1

Rk+1

k+1∑
l=0

(
k + 1

l

)
πl(1− π)k+1−lW (n+ k + 1, j + l).

Lemma 3.1.1. The arbitrage price of a European call option, C(N, l), with underlying asset,

S, with expiry T and strike K at the nth time step is given

C(n, j) =
1

RN−n

N−n∑
l=0

(
N − n
l

)
πl(1− π)N−n−lC(N, l)

where

C(N, l) = [S(N, l)−K]+ = [S(n, j)U lDN−n−l −K]+.

Corollary 3.1.1. The arbitrage price of a European call option, C(N, l) = [S(N, l) − K]+,

written on a stock, S, at the nth time step with expiry time T and strike K in the Binomial

Model is given by the CRR option pricing formula

C(n, j) = S(n, j)
N−n∑
l=k̂

(
N − n
l

)
π̂l(1− π̂)N−n−l − K

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−l

where

k̂ = inf{k ∈ N : k > log(K/(S(n, j)DN−n))/ log(U/D)}
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and

π̂ =
πU

R
∈ (0, 1).

Proof. We have that

S(n, j)UkDN−n−k −K > 0⇔ S(n, j)UkDN−n−k > K

(U/D)k ⇔ K/(S(n, j)DN−n)

log
(
(U/D)k

)
⇔ log

(
K/(S(n, j)DN−n)

)
k ⇔ log

(
K/(S(n, j)DN−n)

)
/ log (U/D)

if k̂ > N − n then C(n, j) = 0. However, if k̂ < N − n, we have

C(n, j) =
1

RN−n

N−n∑
l=0

(
N − n
l

)
πl(1− π)N−n−lC(N, l)

C(n, j) =
1

RN−n

N−n∑
l=0

(
N − n
l

)
πl(1− π)N−n−l[S(n, j)U lDN−n−l −K]+

C(n, j) =
1

RN−n

k̂∑
l=0

(
N − n
l

)
πl(1− π)N−n−l0

+
1

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−l(S(n, j)U lDN−n−l −K)

C(n, j) =
1

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−lS(n, j)U lDN−n−l

− 1

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−lK

C(n, j) = S(n, j)
N−n∑
l=k̂

(
N − n
l

)[
πU

R

]l [
(1− π)D

R

]N−n−l

− K

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−l

C(n, j) = S(n, j)
N−n∑
l=k̂

(
N − n
l

)
(π̂)l(1− π̂)N−n−l

− K

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−l
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0 <
πU

R
=

(
R−D
U −D

)
U

R
=

(
R−D
U −D

) 1
R
1
U

=
(1− D

R
)

(1− D
U

)
< 1.

Definition 8. We define a random variable Ri below:

Ri =

1, up move with probability p

0, down move with probability (1− p)
(3.12)

Ri is a Bernoulli random variable with parameter p, this implies that:

E[Ri] = p

V ar[Ri] = p(1− p).

We can rewrite S(n, j) = S(0, 0)U jDn−j as S(n, j) = S(0, 0)U
∑n
i=1RiDn−

∑n
i=1Ri .

Lemma 3.1.2. The values of the up and down parameters in the CRR model are given by

u = eσ
√
δt ; d = e−σ

√
δt.

Proof.

S(nδt) = S0U
∑n
i=1RiDn−

∑n
i=1Ri (3.13)

S(nδt)

S0

= U
∑n
i=1RiDn−

∑n
i=1Ri

log

(
S(nδt)

S0

)
= log

(
U

∑n
i=1RiDn−

∑n
i=1Ri

)
(3.14)

= log
(
U

∑n
i=1Ri

)
+ log

(
Dn−

∑n
i=1Ri

)
=

(
n∑
i=1

Ri

)
log(U) +

(
n−

n∑
i=1

Ri

)
) log(D)

= n log(D) +

(
n∑
i=1

Ri

)
log

(
U

D

)
.

Let φ = log
(
S(nδt)
S0

)
.
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We thus have

E[φ] = n log(D) +

(
n∑
i=1

E[Ri]

)
log

(
U

D

)

µ̂n = n log(D) +

(
n∑
i=1

p

)
log

(
U

D

)
= np log(U) + n(1− p) log(D) (3.15)

and

V ar[φ] =

[
log

(
U

D

)]2 n∑
i=1

V ar[Ri]

=

[
log

(
U

D

)]2 n∑
i=1

p(1− p)

σ̂2n =

[
log

(
U

D

)]2
np(1− p). (3.16)

Letting n→∞ we have

np log(U) + n(1− p)log(D)→ µt (3.17)[
log

(
U

D

)]2
np(1− p)→ σ2t (3.18)

this implies that for large n

p log(U) + (1− p) log(D) ≈ µ
t

n
(3.19)

log(U)− log(D) ≈

√
σ2 t

n

p(1− p)
. (3.20)

Rearranging and letting δt = t
n
, we have

p log(U) + (1− p) log(D) ≈ µδt (3.21)

log(U) ≈ log(D) +

√
σ2δt

p(1− p)
. (3.22)

Substituting 3.22 into 3.21 and rearranging we have
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log(D) ≈ µδt− p

√
σ2δt

p(1− p)
. (3.23)

Letting p = (1− p) = 1/2

log(D) ≈ µδt− σ
√
δt. (3.24)

This implies

D ≈ eµδt−σ
√
δt (3.25)

which implies

log(U) ≈ µδt− σ
√
δt+ 2σ

√
δt (3.26)

and hence

U ≈ eµδt+σ
√
δt. (3.27)

Letting n→∞, δt→ 0 and we have

U = eσ
√
δt ; D = e−σ

√
δt.

We state without proof the following theorem:

Theorem 3.1.4. Given the price of a European call option C(n, j) with strike K and expiry

date T , we can determine the price of a put option P (n, j) with the exact same strike and expiry

date using the following formula,

C(n, j)− P (n, j)− S(n, j) +KRN−n = 0.
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3.2 Continuous Time

In this section we look at the celebrated Black-Scholes-Merton formula popularly known as the

Black-Scholes formula for pricing contingent claims, in particular we discuss the European Call

Option. We first outline the underlying assumptions below:

A1 No market frictions.

A2 No credit risk.

A3 Competitive and well-functioning markets.

A4 No intermediate cash flows (no dividends).

A5 No arbitrage opportunities.

A6 No interest rate uncertainty i.e. interest rates r remain constant.

A7 Stock has constant Volatility.

A8 No jumps.

A9 Trading takes place continuously.

Model Specification

• There are 3 securities being traded in our market; a stock whose price is denoted St, a

call option whose price is denoted C(S, t) and a risk-free bond whose price is denoted βt :

• The Stock price, St, follows a Geometric Brownian Motion

dSt = µStdt+ σStdBt (3.28)

where: µ is the drift, σ is the volatility of the stock price and Bt ∼ N (0, 1) is a Brownian

Motion.

• Bond price, βt, is given by:

dβt = rβtdt (3.29)

where r is the risk-free rate.

• The value of a portfolio denoted Vt is given by:

Vt = atSt + btβt (3.30)
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where at is the number of units of stock held in the portfolio; and bt is the number of

units of the bond in the portfolio. We require that this portfolio be self-financing. The

self financing condition is given by

dVt = atdSt + btdβt. (3.31)

Theorem 3.2.1 (Ito’s Formula). Let Xt be a Ito process given by

dXt = udt+ vdBt.

Let g(t, x) ∈ C2([0,∞]× R) i.e. (g is twice continuously differentiable on ([0,∞]× R). Then

Yt = g(t, x)

is also an Ito process, and

dYt =
∂g(t,Xt)

∂t
dt+

∂g(t,Xt)

∂x
dXt +

1

2

∂2g(t,Xt)

∂x2
(dXt)

2,

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules the rules

dt · dt = 0 dt · dBt = 0 dBt · dBt = dt.

Theorem 3.2.2 (Black Scholes PDE). Let the BSM assumptions hold, then the dynamics of a

European Call option are modeled by the following backward parabolic heat equation:

1

2
σ2S

∂2C

∂S2
+ rS

∂C

∂S
+
∂C

∂t
− rC = 0.

Proof. This proof closely follows the one given by [41]. Given that C(S, t) is the price of a

European call option at time t, By Ito’s Formula, we have that

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S
(dS)2 (3.32)

where C = C(S, t) and S = St. Substituting 3.28 into 3.32, we have

dC =
∂C

∂t
dt+

∂C

∂S
(µS + σSdBt) +

∂2C

∂S2
(µSdt+ σSdBt)

2

dC =

(
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S

∂2C

∂S2

)
dt+ σS

∂C

∂S
dBt.

From 3.31,
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dV = atdS + btdβt.

Substituting 3.28 into 3.31, we have the following:

dV = at(µSdt+ σSdBt) + btrβtdt

= (atµS + btrβt)dt+ atσSdBt.

We want V = C, that is the portfolio to replicate the call options payoff at each time t, this

implies dV = dC, hence

(atµS + btrβt)dt+ atσSdBt =

(
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S

∂2C

∂S2

)
dt+ σS

∂C

∂S
dBt

By comparing coefficients, we have

at =
∂C

∂S
(3.33)

atµS + btrβt =
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S

∂2C

∂S2
. (3.34)

Substituting 3.33 into 3.34

∂C

∂S
µS + btrβt =

∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S

∂2C

∂S2

btrβt =
∂C

∂t
+

1

2
σ2S

∂2C

∂S2

bt =
1

rβt

(
∂C

∂t
+

1

2
σ2S

∂2C

∂S2

)
(3.35)

From the replication argument V = C, we have the following

C = atS + btβt. (3.36)

Substituting 3.33 and 3.35 into 3.36, we get

C =
∂C

∂S
S +

1

rβt

(
∂C

∂t
+

1

2
σ2S

∂2C

∂S2

)
βt

rC = rS
∂C

∂S
+
∂C

∂t
+

1

2
σ2S

∂2C

∂S2

0 =
1

2
σ2S

∂2C

∂S2
+ rS

∂C

∂S
+
∂C

∂t
− rC

which is the Black-Scholes PDE.
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Theorem 3.2.3 (Black Scholes Merton Formula). Given that the dynamics of the price of a

European call option are described by the PDE

1

2
σ2S

∂2C

∂S2
+ rS

∂C

∂S
+
∂C

∂t
− rC = 0.

With the following boundary conditions: C(0, t) = 0; C(S, t) ∼ S as S → ∞ and C(S, t) =

max(S −K, 0) The Solution to the Backward Parabolic PDE is,

C(S, t) = SN (d1) +Ke−rτN (d2)

where:

d1 =
ln(S/K) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)
; d2 =

ln(S/K) + (r − 1
2
σ2)(T − t)

σ
√

(T − t)

and

N (x) =
1√
2π

∫ x

−∞
e−

x2

2 dx.

Proof. This proof follows the one given by [37]. We use a change of variable to solve this back-

ward parabolic heat equation.

Let

t = T − τ

σ2/2
(3.37)

S = Kex (3.38)

C(S, t) = Kν(x, τ). (3.39)

Making τ in 3.37 and x in 3.38 subject of their respective formulas give:

τ =
σ2

2
(T − t) (3.40)

x = ln(
S

K
). (3.41)

Differentiating 3.39 w.r.t S and τ , gives

∂C

∂t
= K

∂ν

∂τ

∂τ

∂t
= K

−σ2

2

∂ν

∂τ
(3.42)

∂C

∂S
= K

∂ν

∂x

∂x

∂S
=
K

S

∂ν

∂x
. (3.43)
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We then differentiate 3.43 w.r.t S, gives

∂2C

∂S2
=

∂

∂S

(
∂C

∂S

)
=

∂

∂S

(
K

S

∂ν

∂x

)
=
−K
S2

∂ν

∂S
+
K

S

∂

∂S

(
∂ν

∂x

)
=
−K
S2

∂ν

∂S
+
K

S

∂

∂x

(
∂ν

∂x

)
∂x

∂S

=
−K
S2

∂ν

∂S
+
K

S2

∂2ν

∂x2

(3.44)

The terminal condition C(S, T ) = max(ST −K, 0) becomes max(Kex −K, 0) and C(S, T ) =

Kν(x, 0) so ν(x, 0) = max(ex − 1, 0).

Substituting 3.39, 3.42, 3.43 and 3.44 into the Black-Scholes PDE gives

0 =
−σ2

2

∂ν

∂τ
+
σ2

2
S2

(
−K
S2

∂ν

∂x
+
K

S2

∂2ν

∂x2

)
+ rS

(
K

S

∂ν

∂x

)
− rKν (3.45)

σ2

2

∂ν

∂τ
=
σ2

2

(
−∂ν
∂x

+
∂2ν

∂x2

)
+ r

∂ν

∂x
− rν. (3.46)

We then divide through by
σ2

2

∂2ν

∂x2
− ∂ν

∂x
+

r

σ2/2

∂ν

∂x
− r

σ2/2
ν =

∂ν

∂τ
. (3.47)

Letting k =
r

σ2/2

∂2ν

∂x2
+ (k − 1)

∂ν

∂x
− kν =

∂ν

∂τ
. (3.48)

We then let

ν = eαx+βτu(x, τ), (3.49)

this gives

∂ν

∂τ
= βeαx+βτu+ eαx+βτ

∂u

∂τ
(3.50)

∂ν

∂x
= αeαx+βτu+ eαx+βτ

∂u

∂x
(3.51)

and
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∂2ν

∂x2
= α2eαx+βτu+ 2αeαx+βτ

∂u

∂x
+ eαx+βτ

∂2u

∂x2
. (3.52)

Substituting 3.50, 3.51 and 3.52 into 3.48, gives

βeαx+βτu+ eαx+βτ
∂u

∂τ
= α2eαx+βτu+ 2αeαx+βτ

∂u

∂x
+ eαx+βτ

∂2u

∂x2
(3.53)

+ (k − 1)(αeαx+βτu+ eαx+βτ
∂u

∂x
)− keαx+βτu. (3.54)

Dividing though by eαx+βτ

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂x
+
∂2u

∂x2
+ (k − 1)

(
αu+

∂u

∂x

)
− ku. (3.55)

Collecting like terms gives

∂u

∂τ
=
∂2u

∂x2
+ [2α + (k − 1)]

∂u

∂x
+ [α2 + (k − 1)α− k − β]u.

We then choose

α = −(k − 1)

2
; β = −(k + 1)2

4
(3.56)

which reduces our equation to

∂u

∂τ
=
∂2u

∂x2
(3.57)

which is a one dimensional heat equation.

The initial condition is transformed to

u(x, 0) = e(
(k−1)

2
)xν(x, 0)

= e(
(k−1)

2
)x max(ex − 1, 0)

= max(e(
(k+1)

2
)x − e(

(k−1)
2

)x, 0).

We observe that u0(x) = u(x, 0) > 0 when x > 0 otherwise u(x, 0) = 0.

From the study of PDE’s we know that the solution of the one dimensional heat equation is

given by

u(x, τ) =
1√
4πτ

∫ ∞
−∞

u0(s)e
−( (x−s)

2

4τ
)ds. (3.58)

41



Now let

z =
(s− x)√

2τ

which implies

s = z
√

2τ + x ; ds =
√

2τdz.

Then

u(s, τ) =
1√
2π

∫ ∞
−∞

u0(z
√

2τ + x)e−
z2

2 dz. (3.59)

Since u0 = (x) = u(x, o) > 0 when x > 0 otherwise u(x, o) = 0 we will integrate over the

domain where u0 > 0 i.e. z > − x√
2τ

, on this domain u0 = e(
(k+1)

2
)(z
√
2τ+x) − e(

(k−1)
2

)(
√
2τ+x).

Hence integral 3.59 becomes

u(x, τ) =
1√
2π

∫ ∞
− x√

2τ

[
e(

(k+1)
2 )(z

√
2τ+x) − e(

(k−1)
2 )(

√
2τ+x)

]
e−

z2

2 dz

=
1√
2π

[∫ ∞
− x√

2τ

e(
(k+1)

2 )(z
√
2τ+x)e−

z2

2 dz −
∫ ∞
− x√

2τ

e(
(k−1)

2 )(
√
2τ+x)e−

z2

2 dz

]
.

Let

I1 =
1√
2π

∫ ∞
− x√

2τ

e(
(k+1)

2 )(z
√
2τ+x)e−

z2

2 dz I2 =
1√
2τ

∫ ∞
− x√

2τ

e(
(k−1)

2 )(
√
2τ+x)e−

z2

2 dz.

We first solve for I1

I1 =
1√
2π

∫ ∞
− x√

2τ

e(
(k+1)

2 )(z
√
2τ+x)e−

z2

2 dz

=
1√
2π

∫ ∞
− x√

2τ

e−
1
2 (z

2−(k+1)
√
2τz)−(k+1)x)dz.

By completing the square of the exponent
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−1

2
(z2 − (k + 1)

√
2τz)− (k + 1)x) = −1

2
(z2 − (k + 1)

√
2τz)− (k + 1)x

+
(k + 1)2τ

2
− (k + 1)2τ

2
)

=
1

2

(
z − (k + 1)2

√
2τ

2

)2

+
(k + 1)2τ

4
+

(k + 1)x

2
.

I1 becomes

I1 =
e

(k+1)2τ
4

+
(k+1)x

2

√
2π

∫ ∞
− x√

2τ

e
1
2

(
z− (k+1)2

√
2τ

2

)2
dz

=
e

(k+1)2τ
4

+
(k+1)x

2

√
2π

∫ ∞
− x√

2τ

e
1
2

(
z−(k+1)2

√
τ/2
)2
dz.

Letting

y = z − (k + 1)2
√
τ/2 ⇒ dy = dz

I1 becomes

I1 =
e
(k+1)2τ

4
+ (k+1)x

2
√

2π

∫ ∞
− x√

2τ
−
√
τ/2(k+1)

e−
y2

2 dy.

The cumulative normal distribution is given by

N (d) =
1√
2π

∫ d

−∞
e−

y2

2 dy

=
1√
2π

∫ ∞
−d

e−
y2

2 dy.

Letting d1 = − x√
2τ
−
√
τ/2(k + 1), I1 becomes

I1 = e
(k+1)2τ

4
+

(k+1)x
2 N (d1).

Solving for I2
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I2 =
1√
2π

∫ ∞
− x√

2τ

e(
(k−1)

2 )(z
√
2τ+x)e−

z2

2 dz

=
1√
2π

∫ ∞
− x√

2τ

e−
1
2 (z

2−(k−1)
√
2τz)−(k−1)x)dz.

By completing the square

−1

2
(z2 − (k − 1)

√
2τz)− (k − 1)x) = −1

2
(z2 − (k − 1)

√
2τz)− (k − 1)x

+
(k − 1)2τ

2
− (k − 1)2τ

2
)

=
1

2

(
z − (k − 1)2

√
2τ

2

)2

+
(k − 1)2τ

4
+

(k − 1)x

2
.

I2 becomes

I2 =
e

(k−1)2τ
4

+
(k−1)x

2

√
2π

∫ ∞
− x√

2τ

e
1
2

(
z− (k−1)2

√
2τ

2

)2
dz

=
e

(k−1)2τ
4

+
(k−1)x

2

√
2π

∫ ∞
− x√

2τ

e
1
2

(
z−(k−1)2

√
τ/2
)2
.

We let

w = z − (k − 1)2
√
τ/2 ⇒ dw = dz

and I2 becomes

I2 =
e

(k−1)2τ
4

+
(k−1)x

2

√
2π

∫ ∞
− x√

2τ
−
√
τ/2(k−1)

e−
y2

2 dw.

Using the idea of cumulative normal and letting d2 = − x√
2τ
−
√
τ/2(k− 1), I2 can be rewritten

as

I2 = e
(k−1)2τ

4 + (k−1)x
2 N (d2).

This means
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u(x, τ) = e
(k+1)2τ

4 + (k+1)x
2 N (d1)− e

(k−1)2τ
4 + (k−1)x

2 N (d2).

And hence,

ν(x, τ) = eαx+βτu(x, τ)

= e(−
(k−1)

2 )x−( (k+1)2

4 )τ
[
e

(k+1)2τ
4 + (k+1)x

2 N (d1)− e
(k−1)2τ

4 + (k−1)x
2 N (d2)

]
= exN (d1)− e−kτN (d2)

V (S, t) = Kν(x, τ)

= Keln(
S
K
)N (d1)−Ke

r
σ2/2

σ2/2(T−t)N (d2)

= SN (d1)−Ker(T−t)N (d2).

where

d1 =
x√
2τ

+

√
τ

2
(k + 1) d2 =

x√
2τ

+

√
τ

2
(k − 1)

=
1√
2
· x+ (k + 1)τ√

τ
=

1√
2
· x+ (k − 1)τ√

τ

=
1√
2
·

ln( S
K

) + ( r
σ2/2

+ 1)σ
2

2
(T − t)√

σ2

2
(T − t)

=
1√
2
·

ln( S
K

) + ( r
σ2/2
− 1)σ

2

2
(T − t)√

σ2

2
(T − t)

=
ln( S

K
) + (r + σ2

2
)(T − t)

σ
√

(T − t)
=

ln( S
K

) + (r − σ2

2
)(T − t)

σ
√

(T − t)
.

3.3 Convergence of CRR Model to BSM Model

Theorem 3.3.1 (Central Limit Theorem). Let X1, X2, · · · be a sequence of independent and

identically distributed random variables each having mean µ and variance σ2. Then the distri-

bution of

X1 +X2 + · · ·+Xn − nµ
σ
√
n

tends to the standard normal as n→∞. That is for −∞ < a <∞,

P
{
X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ a

}
→ 1√

2π

∫ a

−∞
e−x

2/2dx
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as n→∞.

Theorem 3.3.2 (Berry-Esseen Theorem). Let Xn,j, n ≥ 1, 1 ≤ j ≤ kn, be L3 random variables

with kn →∞ such that ∀ n and j,

E(Xn,j) = 0.

Let Fn,j be the cumulative distribution of Xn,j.

Write, for n ≥ 1

Sn =
kn∑
j=1

Xn,j

and let Fn(x) be the cumulative distribution of Sn.

For n ≥ 1 and 1 ≤ j ≤ kn, write

σ2
n,j = E(X2

n,j), s2n =
kn∑
j=1

σ2
n,j

and

γn,j = E(X2
n,j), Γn =

kn∑
j=1

γn,j.

We further assume that for each n,

s2n =
kn∑
j=1

σ2
n,j = 1.

Then there is some A0 < 36 such that for each n ≥ 1,

sup
x∈R
|Fn −N (x)| ≤ A0Γn

where N (x) is the cumulative normal distribution function.

Remark 3.3.1. In the case of a single sequence of independent and identically distributed r.v.’s

Xj, j > 1 with mean 0, variance σ2, and third absolute moment γ < ∞, the right side reduces

to
A0γ

σ3

1√
n
.

This special case of the Berry-Eseen Theorem simplifies to

sup
x∈R
|Fn −N (x)| ≤ A0γ

σ3

1√
n
.

In particular where Xn ∼ B(p) and we have that ∀n, µ = p and σ =
√
p(1− p) and
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γ = E|X1 − p|3 = p(1− p)3 + (1− p)|0− p|3

= p(1− p)3 + (1− p)p3

= p(1− p)[(1− p)2 − p2]

(3.60)

and

σ3 = (
√
p(1− p))3

= p(1− p)
√
p(1− p).

(3.61)

Definition 9. We define a binomial random variable

Sn = X1 +X2 + · · ·+Xn

where Xi; i ∈ {1, 2, · · · , n} are Bernoulli random variables B(p). Sn is described as the number

of successes in n Bernoulli trials, where

P[Sn = k] =

(
n

k

)
pk(1− p)n−k; P[Sn ≥ x] =

n∑
k=x

(
n

k

)
pk(1− p)n−k

and

E[Sn] = µ = np; V ar[Sn] = σ2 = np(1− p).

Definition 10. Let

S∗n =
X1 +X2 + · · ·+Xn − np√

np(1− p)
.

We define

Fn(x) = P[S∗n ≤ x]

alternatively

Fn(x) = P[Sn ≤ np+ x
√
np(1− p)].
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Remark 3.3.2. We let P[Sn ≤ x] = Ψ(x;n, p)

⇒ Ψ(x;n, p) = 1− P[Sn ≥ x]

⇒ P[Sn ≥ x] = 1−Ψ(x;n, p)

= 1− P

[
S∗n ≤

x− np√
np(1− p)

]
.

We also denote P[Sn ≥ x] = Φ(x, n, p), hence

Φ(x;n, p) = 1−Ψ(x;n, p)

Theorem 3.3.3. Let C(n, j) be the price of a European Call Option at time t = nδt on an

underlying S with strike price K. Let C(S, t) be the value of the same call option given by the

Black-Scholes-Merton formula. We have that

C(S, t) = lim
N→∞

C(n, j).

Proof. This proof closely follows the one given by [48]. We fist recall that from the CRR pricing

Formula we have that the value at the nth time step of a European call option with Expiration

T and strike K is given by

C(n, j) = S(n, j)
N−n∑
l=k̂

(
N − n
l

)
π̂l(1− π̂)N−n−l − K

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−l

where

k̂ = inf{k ∈ N : k > log(K/(S(t)DN−n))/ log(U/D)}

and

π̂ =
πU

R
∈ (0, 1).

The call option formula can be rewritten in the following form using the notation previously

introduced

C(n, j) = S(n, j)Φ(k̂;M, π̂) +KR−MΦ(k̂;M,π)

where M = N − n.
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By the Central Limit Theorem, we have Ψ(x;n, p)→ N (x) as n→∞ and thus

|Ψ(x;n, p)−N (x)| =

∣∣∣∣∣Ψ(x, n, p)−N

(
x− np√
np(1− p)

)∣∣∣∣∣
=

∣∣∣∣∣P[Sn ≤ x]−N

(
x− np√
np(1− p)

)∣∣∣∣∣
=

∣∣∣∣∣P
[
S∗n ≤

x− np√
np(1− p)

]
−N

(
x− np√
np(1− p)

)∣∣∣∣∣
since Φ(x;n, p) = 1−Ψ(x;n, p). This implies that

1−Ψ(x;n, p) = Φ(x;n, p)→ 1−N (x) = N (−x).

By the Berry-Eseen Theorem

∣∣∣∣∣Φ(k̂,M, p)−N

(
Mp− k̂√
Mp(1− p)

)∣∣∣∣∣ ≤ C
p2 + (1− p)2√

p(1− p)
1√
M

for Φ(k̂,M, π), where p = π, we have

p = π =
erδτ − e−σ

√
δτ

eσ
√
δτ − e−σ

√
δτ

(3.62)

where τ = T − t and δτ = T−t
M

.

Applying the Taylor theorem to 3.62, gives

π =
r − 1

2
σ2

2σ

√
δτ +

1

2
+ o(
√
δτ).

From the CRR formula
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k̂ ≈
ln(K

S
)−M ln(D)

ln(U
D

)
=

ln(K
S

)−M ln(e−σ
√
δτ )

ln
(

eσ
√
δτ

e−σ
√
δτ

)
=

ln(K
S

) +Mσ
√
δτ

2σ
√
δτ

=
ln(K

S
)
√
M

2
√
τ

+
M

2
.

Therefore

Mπ − k̂√
Mπ(1− π)

≈
M
[
r− 1

2
σ2

2σ

√
δτ + 1

2

]
−
[
ln(K

S
)
√
M

2
√
τ

+ M
2

]
√
M
√

1
2
.1
2

=

[
M
2

+
r− 1

2
σ2

2σ

√
τ
√
M
]
−
[
ln(K

S
)
√
M

2
√
τ

+ M
2

]
√
M
√

1
4

=

r− 1
2
σ2

2σ

√
τ − ln(K

S
)

2
√
τ

1
2

=
ln( S

K
) + (r − 1

2
σ2)τ

σ
√
τ

= d2.

This means Φ(k̂;M,π) → N (d2) as n → ∞. Using the same argument for Φ(k̂;M, π̂), where

p =

hatπ

p = π̂ =
πU

R
=

1− e−(σ
√
δτ+rδτ)

1− e−2σ
√
δτ

.

Again by the Taylor Theorem we have:

π̂ =
r + 1

2
σ2

2σ

√
δτ +

1

2
+ o(
√
δτ)

hence
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Mπ̂ − k̂√
Mπ̂(1− π̂)

≈
M
[
r+ 1

2
σ2

2σ

√
δτ + 1

2

]
−
[
ln(K

S
)
√
M

2
√
τ

+ M
2

]
√
M
√

1
2
.1
2

=

[
M
2

+
r+ 1

2
σ2

2σ

√
τ
√
M
]
−
[
ln(K

S
)
√
M

2
√
τ

+ M
2

]
√
M
√

1
4

=

r+ 1
2
σ2

2σ

√
τ − ln(K

S
)

2
√
τ

1
2

=
ln( S

K
) + (r + 1

2
σ2)τ

σ
√
τ

= d1.

Which means Φ(k̂;M, π̂)→ N (d1) as n→∞ and hence

SΦ(k̂;M, π̂) +KR−MΦ(k̂;M,π)→ SN (d1) +Ke−rτN (d2) as n→∞

which is the Black Scholes Formula.

Theorem 3.3.4 (Put-Call Parity). Given the price of a European call option C(S, t) with

strike K and Expiration T , we can determine the price of a put option P (S, t) with the same

specifications using the following formula which is called the Put-Call Parity formula,

C(S, t)− P (S, t)− S(t) +Ke−r(T−t) = 0.

3.4 Adjusting For Dividends

In this section we relax the no dividends assumption and allow for intermediate cash flows and

show how this is factored into the CRR Binomial Model.

Definition 11. A dividend is the distribution of reward from a portion of company’s earnings

and is paid to a class of its shareholders.

In discussing Dividends, three dates are of particular importance, te, tc, tp, where te < tc < tp.

We describe these dates below:

• te is called the ex-dividend date, this means if you own a company’s stock just before

te, you are entitled to the dividend cash flow and if you sell the stock just after te you are

still entitled to the dividend cash flow [48].
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• tc is the date when the company close the books and decide who is entitled to the dividend

cash flow [48].

• tp is when the company sends out the dividend cheques, i.e., pays the dividends [48].

After the ex-dividend date, share prices fall by an amount equal to the dividend amount, if

this does not occur an arbitrage is created, i.e. you can buy the stock just before te and sell it

just after te for the same amount leading to a riskless profit (dividend amount claimed).

Different companies have different dividend policies, which specifies dividend amount and fre-

quency of dividend payments. We will consider a constant dividend yield policy. We denote

δ̂ = D̂
S

, where D̂ is the dividend amount; S is the stock price; and δ̂ is the dividend yield.

We first consider a one period Binomial model and allow for dividends within that single period.

The value of the stock at the end of the period take one of two values (1− δ̂)US in the upstate,

(1− δ̂)DS in the down state.

S(0,0)

(US(0, 0)

(DS(0, 0)

(a) Binomial Model without Dividends

S(0,0)

(1− ρ)US(0, 0)

(1− ρ)DS(0, 0)

(b) Binomial Model with Dividends

Figure 3.3: 1-Period Binomial Model with and without Dividends

The dividend does not affect our model in any way except that the stock prices are lower after a

dividend payment. In fact the value of a European option with dividends is priced identically as

one without dividends, the only difference is that S(n, j) is replaced by S̃(n, j) = S(n, j)(1−δ̂)γ,
where γ is the number of ex dividend dates. The same holds true in the multi-period case, and

we thus have the following corollary.

Corollary 3.4.1. The arbitrage price of a European call option, C(N, l) = [S̃(N, l) − K]+,

written on a stock S with constant dividend yield at the nth time step with expiry time T and

strike K in the Binomial Model is given by the CRR option pricing formula

C(n, j) = S̃(n, j)
N−n∑
l=k̂

(
N − n
l

)
π̂l(1− π̂)N−n−l − K

RN−n

N−n∑
l=k̂

(
N − n
l

)
πl(1− π)N−n−l

where

k̂ = inf{k ∈ N : k > log(K/(S̃(n, j)DN−n))/ log(U/D)};
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Input Impact on Option value
Volatility The higher the volatility the higher the op-

tion value.
Dividend rate The higher the dividend rate the lower the

call option value but the value is increased
in the case of a put option.

Interest rate In the case of a call option value is increased
the higher the interest rate whereas the value
is diminished in the case of a put option.

Time to expiration The longer the time to expiration the greater
the option value.

Stock price (Underlying as-
set)

In the case of a call option an increase in the
stock price increases value whereas it dimin-
ishes value in the case of a put option.

Strike price The higher the strike price the lower the call
option value but the higher the put value.

Table 3.1: The Impact of Option Inputs on Option Value

π̂ =
πU

R
∈ (0, 1) and S̃(n, j) = S(n, j)(1− δ̂)γ.

These idea can be extend to continuous time very easily by applying the same methodology to

price a European option without dividends but we will not discuss that in this study. We will

simply state the price of a European option on an underlying S at time t with expiration date

T , strike K and continuous dividend yield δ̂ below:

C(S, t) = Se−δ̂tN (d̂1) +Ke−rτN (d̂2)

where:

d̂1 =
ln S

K
+ (r − ˆδ + σ2

2
)(T − t)

σ
√
T − t

;d̂2 =
ln S

K
+ (r − ˆδ − σ2

2
)(T − t)

σ
√
T − t

The inputs of a model impact the values of its output, it is important to know how input

variables affect the output values, we give the impact of option inputs on option value in table

3.1 below.

3.5 American Options

In this section we present the valuation of the American style call option in discrete time. Since

an American call option can be exercised at any time upto and including the maturity date,

at each time step an American option can be sold, held or exercised. This means if V (n, j)
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denotes the value of an American option then,

V (n, j) ≥ [S(n, j)−K]+.

V (n, j) can be computed by a simple adjustment to the backwardization formula. At node

(n, j) we first calculate

W (n, j) =
πV (n+ 1, j + 1) + (1− π)V (n+ 1, j)

R

and compare W (n, j) with [S(n, j)−K]+. If W (n, j) > [S(n, j)−K]+ then we hold the option.

However, if W (n, j) < [S(n, j)−K]+ then we exercise the option. Hence,

V (n, j) = max(W (n, j), [S(n, j)−K]+).

The algorithm then becomes,

V (N, j) = [S(n, j)−K]+

W (n, j) =
πV (n+ 1, j + 1) + (1− π)V (n+ 1, j)

R

V (n, j) = max(W (n, j), [S(n, j)−K]+)

C(0, 0) = V (0, 0).

We thus have that the value of an American style option ≥ the value of a European style option.
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Chapter 4

Real Options

The failure of DCF methods as discussed in the preceding sections and chapters is its inability

to incorporate the impact of managerial flexibility on project value. The root cause of this

inadequacy can be found clearly in the NPV formula which suggests that real projects are

analogous to a portfolio of riskless bonds. [33] asserted that the treatment of an investment

project as a portfolio of riskless bonds in the presence of uncertainty and managerial flexibility

was inadequate and highly suspect. Consequently [27] suggested the use of contingent claim

analysis in order to capture the extra component of value. He stated that it would be more

accurate to view investment projects as being analogous to financial options since they both

have asymmetric returns. The analogy is intuitive, [11] described investment opportunities

as options, i.e., rights to take a certain action (buy or sell an asset) without the symmetric

obligation to perform the action at a future date [47]. The payoffs of financial options are

asymmetric as are the returns of capital investment projects with operating flexibility. Thus

[33] likened the use of DCF analysis to valuing a stock option and ignoring the asymmetric

right to take or not to take an action. They further stated

“while traditional analysis views capital investment, like children, as hostages to

fortune, our approach (of viewing investment as options) recognizes that, like chil-

dren also, they are often amenable to their progenitors’ guidance.” (emphasis my

own)

The option analogy has intuitive appeal but there are differences between financial options and

“real options” as Stewart C. Meyers called them. We discuss the similarities and differences in

table 4.1
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Financial Options Real Options

Option Price Price paid to acquire option Price paid to acquire option, keep

it alive, and clear uncertainty.

Negotiable

Asset Price Underlying Asset/share

price

PV given by DCF

Strike Price Agreed Investment Cost

Expiration Time Defined, known Known and Unknown

Timing of payoff Instantaneous Often quite after expiry, over a

long time.

Volatility Of underlying Asset Of main future cash flow driver

Time value of money Interest rate WACC, treasury rate, etc

Resolution of uncer-

tainty

Automatic Not Automatic

Option holder’s con-

trol on value

None Mostly

Table 4.1: Finacial Vs Real Options

It is worth noting that this analysis is not a replacement of DCF analysis but rather an aug-

mentation. The purpose of real options analysis is to capture the option value component of

the expanded NPV. [45] demonstrates that in the absence of managerial flexibility the options

framework yields the same value as the static DCF, DCF can then be considered as a special

case of real options analysis (ROA).

ROA solves the discount rate issue inherent inherent in DTA. In ROA we discount using the

risk-free rate since risk is embedded in the up and down factors as shown in the previous chapter

on options pricing (CRR model) hence no need to determine a new discount rate to reflect the

change in risk profile.

The ROA literature is vast, tables 4.2 and 4.3 describe the different types of options that

are encountered most frequently, the researchers that analysed them as well as industries they

are important in, the table was adopted from [47].
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Category Description Important In Analysed By

Option to defer Management holds a lease on

(or option to buy) valuable

land resources. It can wait (x

years) to see if output prices

justify constructing a building

or plant, or developing a field.

All natural resource

extraction industries;

real estate develop-

ment; farming; paper

products.

Tourinho [43]; Titman

[42]; McDonald &

Seigel [26]; Paddock,

Seigel & Smith [16];

Ingersoll and Ross

[18].

Time to build

option (staged

investment)

Staging investment as a series

of outlays creates an option

to abandon the enterprise mid-

stream if new information is

unfavourable. Each stage can

be viewed as an option on sub-

sequent stages, and valued as a

compound option.

All R&D intensive

industries, especially

pharmaceuticals; long

development capital

intensive projects

e.g. large scale con-

struction or energy

generating plants;

start-ventures.

Majd & Pindyck [25];

Carr [4]; Trigeorgis

Option to alter

operating scale

(e.g., to expand;

to contract; to

shut down &

restart)

If market conditions are more

favourable than expected, the

form can expand the scale of

production or accelerate re-

source utilization. Conversely

if conditions are less favourable

than expected, it can reduce

the scale of operations. In ex-

treme conditions, production

may temporarily halt and start

again.

Natural resource in-

dusties such as mine

operations; facilities

planning and con-

struction in cyclical

industries; fashion

apparel; consumer

goods; commercial

real estate.

Brennan & Schwartz

[1]; McDonald &

Seigel [26]; Trigeor-

gis & Mason [45];

Pindyck [34].

Option to aban-

don

If market conditions decline

severely, management can

abandon current operations

permanently and realize the

resale value of capital equip-

ment and other assets in the

secondhand markets.

Capital intensive in-

dustries such as air-

lines and railroads; fi-

nancial services; new

product introductions

in uncertain markets

Myers & Majd [28].

Table 4.2: Summary of Common Real Options and Industry Applications 1
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Category Description Important In Analysed By

Option to switch

(e.g., outputs

and inputs)

If prices or demand change,

management can change the

output mix of the facility

(product flexibility). Alterna-

tively, the same outputs can be

produced using different types

of inputs (process flexibility).

Output shifts : any

good sought in small

batches or subject to

volatile demand, e.g.,

consumer electronics;

toys specialty paper;

machine parts; autos.

Input shifts : all feed-

stock dependent facil-

ities, e.g., oil; elec-

tric power; chemicals;

crop switching; sourc-

ing.

Magrabe [24];

Kensinger [19];

Kulatilaka [21];

Kulatilaka & and

Trigeorgis [22]

Growth options An early investment (e.g.,

R&D, lease on undevel-

oped land or oil acqui-

sition, information net-

work/infrastructure) is a

prerequisite or link in a

chain of interrelated projects,

opening up future growth

opportunities (e.g., new gen-

eration product or process, oil

reserves, access to new market,

strengthening of core capa-

bilities). Like inter-project

compound options.

All infrastructure

based or strategic

industries, especially

high-tech, R&D or in-

dustries with multiple

project generations

or applications (e.g.,

computers and phar-

maceuticals); multi-

national operations;

strategic acquisitions.

Myers [27]; Brealy

& Myers [32]; Kester

[20]; Trigeorgis [44];

Pindyck [34]; Chung

& Charoenwong [6].

Multiple inter-

acting options

Real life projects often in-

volve a collection of various op-

tions, both upward -potential

enhancing calls and downward-

protection put options present

in combination. Their com-

bined option value may differ

from he sum of separate op-

tion values, i.e., they interact.

They may also interact with fi-

nancial flexibility options.

Real-life projects in

most industries dis-

cussed above.

Brennan & Schwartz

[33]; Trigeorgis [46]

Table 4.3: Summary of Common Real Options and Industry Applications 2
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4.1 Option to Invest

As we previously noted, most investment projects are not now or never propositions as suggested

by the DCF methodology, but management has the ability to defer investment. Since projects

can be deferred this means that an investment project competes with itself delayed in time [18].

Managements may choose to defer investment because:

• Current market conditions may be unfavourable and current NPV < 0;

• NPV > 0 but there may be too much uncertainty in the market and therefore prudent to

wait and see how things turn out [11].

The second reason for waiting stems from the fact that investment expenditures are at the very

least partially irreversible which means that if the market turns south, then these expenditures

are sunk costs [34]. Since investment involves some degree of irreversibility, it is valuable to wait

for the arrival of new information, i.e., the resolution of uncertainty. When a firm chooses to

invest they are effectively giving up the possibility of waiting for new information which might

be pivotal to the desirability and timing of the investment [34]. This means that investing

involves an opportunity cost which is not factored into the NPV calculation. Hence, “the

correct calculation involves comparing the value of investing today with the (present) value of

investing at all possible times in the future [26]”. An investment project is thus better treated

as a call option on the PV of the project with exercise price, I, the investment outlay [44].

Uncertainty, irreversibility and managerial flexibility interact to give deferrability value (option

to invest) [10]. Traditional NPV analysis assumes that if projects are not taken immediately

they disappear. NPV is therefore myopic in its view of capital investment since the opportunity

cost of investment is ignored. The NPV rule therefore needs to be altered, instead of, invest if

NPV > 0, management should invest if NPV > option to invest or if PV > investment outlay

and opportunity cost of investing. Although waiting has its merits, the investor gives the cash-

flows that could have been otherwise earned during the waiting period, this is treated as a

dividend also called (leakage) in ROA. Competition is another factor that should be considered

when analyzing the value of waiting, as competitive entry will diminish the profits and market

share of the incumbent firm [47]. Consequently the benefits of waiting must be weighed against

the costs and the optimal decision made accordingly [35]. In light of this [44] suggested a real

options classification scheme based on the following strategic questions:

1. Is the option exclusive and what is the impact of competition on the incumbent firm’s

ability to appropriate option value?

2. Is the investment opportunity valuable in and of itself or is it a link in a chain of subsequent

investment opportunities?

3. Does the project require an immediate accept/reject decision or can the decision be de-

ferred?
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The first strategic question deals with the exclusivity of the rights of a project, if rights are

exclusive it is called proprietary, if not, we refer to them as shared. The second strategic

question is concerned with the idea presented by Myers which he referred to as the times

series inter-dependencies, it categorises the option into simple and compound, it is called a

compound option if the investment is a link to subsequent investment and simple if not. The

third question deals with whether projects have an expiration date attached to them or not, it

categorises projects into deferrable and expiring. We present the option classification scheme

in figure 4.1 below.
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Figure 4.1: Real Options Classification Scheme
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The subject of shared real options and the impact of competition on option value can be found

in [47], [40], [39] and [5]. Another factor to consider is the impact of interest rate uncertainty

on project value, this is discussed by [18] and [38]. For our purposes however, we will operate

under the CRR assumption of constant interest rates. In the next chapter, we analyse an option

to invest in a basalt quarry by Mbebane enterprises, the option is proprietary since they hold

a lease to the quarry. This is a PSD, according to the classification scheme.
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Chapter 5

Data Analysis and Results

In this chapter we analyse an investment opportunity by Mbebane Enterprises of a Basalt

quarry for which they holds the rights. The project will take 1− year.

Methodology

We summarise the analysis below:

Step 1 We first carry out a DCF to determine the static NPV portion of the expanded NPV.

Step 2 We will then use logarithmic cash flows method to determine the volatility of the projects

cash flows.

Step 3 With the volatility determined, we can determine up and down factors and the risk neutral

probabilities of CRR model.

Step 4 Use the CRR model to determine option value.

5.1 Discounted Cash-flow (Mbebane Enterprises Basalt

Quarry)

The DCF analysis was carried out by Mbebane Enterprises. We summarise the DCF analysis

in the table below:
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Month Cash-flow Discount Factor Present Value

0 BWP 1,305,000.00 1 BWP 1,305,000.00

1 BWP 385,351.00 0.995850622 BWP 383,752.03

2 BWP 987,901.00 0.991718462 BWP 979,719.66

3 BWP 973,861.00 0.987603448 BWP 961,788.48

4 BWP 501,181.00 0.983505508 BWP 492,914.27

5 BWP 973,861.00 0.979424572 BWP 953,823.39

6 BWP 987,901.00 0.97536057 BWP 963,559.68

7 BWP 487,141.00 0.971313431 BWP 473,166.60

8 BWP 987,901.00 0.967283085 BWP 955,579.93

9 BWP 973,861.00 0.963269462 BWP 938,090.56

10 BWP 501,181.00 0.959272493 BWP 480,769.15

11 BWP 973,861.00 0.955292109 BWP 930,321.73

12 BWP 987,901.00 0.951328242 BWP 939,818.12

RADR 0.05

PV OF CASHFLOWS BWP 9,453,303.61

NPV BWP 8,148,303.61

IRR 54%

Table 5.1: DCF Summary of Mbebane Basalt Quarry

Since NPV > 0, according to the NPV rule we should invest. The IRR > RADR, thus by IRR

rule we should invest. Both DCF metrics agree. We then carry out ROA to determine whether

the immediate investment is optimal or waiting is appropriate. To determine the option value,

we first need to determine the volatility of cash-flows using logarithmic cash-flow method. The

calculations were performed in excel, the table is given below.
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Volatility Estimation

Month Cash-Flow ln(Rt) = St/St−1 lnRt

0 BWP 1,305,000.00

1 BWP 385,351.00 0.295288123 -1.219803712

2 BWP 987,901.00 2.563639383 0.941427883

3 BWP 973,861.00 0.98578805 -0.014313907

4 BWP 501,181.00 0.514632992 -0.66430127

5 BWP 973,861.00 1.943132321 0.66430127

6 BWP 987,901.00 1.014416842 0.014313907

7 BWP 487,141.00 0.493107103 -0.707028881

8 BWP 987,901.00 2.027956998 0.707028881

9 BWP 973,861.00 0.98578805 -0.014313907

10 BWP 501,181.00 0.514632992 -0.66430127

11 BWP 973,861.00 1.943132321 0.66430127

12 BWP 987,901.00 1.014416842 0.014313907

Average lnRt -0.023197986

Periodic Volatility σp 68%

Annualized Volatility σ 237%

Table 5.2: Logarithmic Cash-flow

The cash-flows of this project are highly volatile with a volatility of 237%.

5.2 Option to Invest (Basalt Quarry)

In this section we use CRR model to determine option value and timing of investment. We

analyse this investment opportunity as an American call option. The present value of cash-flows

is treated as the value of the underlying, the initial investment outlay is treated as the strike

price, we assume a zero leakage (dividend) rate. Table 5.3 lists the values of input and option

parameters. The annualized volatility calculated using the logarithmic cash-flow method is

used to determine the up and down factors, which are then used to calculate the risk neutral

probabilities.
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Table 5.3: Parameters

(a) Input Parameters

Parameter Value

S BWP 8,148,303.61

K BWP 1,305,000.00

r 0.0475

σ 237%

T 1

dt 0.125

leakage rate 0

(b) Option Parameters

Parameter Value

U 2.308680981

D 0.433147762

π 0.305410426

1− π 0.694589574

R 1.005955162

1/R 0.994080092

Using the the present value of cash-flows and the up and down factors, the asset lattice (blue

nodes) is generated. We then use the American call option backwardization algorithm to

generate the option lattice (green nodes) and option value is determined. The orange nodes are

the binomial probabilities associated with each outcome across time. The lattices are shown

below.
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Figure 5.1: CRR Binomial Lattice

The expanded NPV obtained from CRR Binomial lattice is BWP 29,070,272.85. This means

that the option value is BWP 20,921,969.24. Since option value is > NPV, according to option

analysis it is not optimal to exercise the option (i.e. wait), but NPV analysis and IRR metric

make this a go project. The diagrams below indicate regions where exercising the option would

result in net gain, i.e., (+)NPV and where exercising the option would result in net loss, i.e.,

(-)NPV.
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Figure 5.2: (+)NPV Region
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Figure 5.3: (-)NPV Region

The (-)NPV region is smaller than the (+)NPV region, hence management may want to wait

so they can realise greater value, but it does come at a risk. So the decision to wait will

be dependent on the risk appetite of management. In the (+)NPV region option value >

NPV hence it is never optimal to exercise early but option value is unrealised value, hence

management will have to consider exercising or waiting based on probabilities of gains or losses

in value. The probabilities, as well as the max and min values of cash-flows at each point in

time are shown in the binomial lattices constructed. Swings in the the NPV are very high due

to the high volatility value, this should also be considered when making the decision to wait or

invest.
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Time Probability of (+) Returns

0 100%

0.125 100%

0.25 100%

0.375 88%

0.5 94%

0.675 78%

0.75 89%

0.875 77%

1 86%

Table 5.4: Probability of (+) Returns

The decision to invest is thus left to the risk preference of management which is guided by the

probability assigned by the binomial distribution at each node. Although the decision to invest

early is not optimal it might be more profitable than the optimal decision to exercise the option

at expiry. Hence the lattice can be used as a decision tool to make this all important decision.

69



Chapter 6

Conclusion and Recommendations

DCF methods as we discussed in this dissertation are not adequate in capturing all sources

of value inherent in many projects especially when project value is highly volatile, investment

costs are irreversible and management has the capacity to make mid-course corrections. The

presence of these 3 factors introduces option value. Option value is not captured by standard

capital measurement techniques but is captured well by contingent claim analysis. The option

to invest (wait) is a source of value inherent in many projects and should always be considered

when appraising and timing investment projects. In this dissertation we analysed an invest-

ment project by Mbebane Enterprises for a basalt quarry, DCF techniques made this a ‘go’

project. ROA was then used to determine whether immediate investment was appropriate,

we found that option value exceeded NPV hence immediate investment was found not to be

optimal, the optimal decision was to wait until expiration but this could mean loss in project

value. The binomial lattice presented graphically the max and min values of cash-flows and

attached probabilities to them which can be used as guides for making the investment decision.

Our analysis showed that option value was very significant this was due to the high volatility

of cash-flows, this meant large swings in project value, hence waiting could bring significant

gains in value or significant loss in value. We found that the binomial lattice could thus be

used to graphically show these swing and probability of returns. Using the lattice, management

could make a more informed decision on waiting or immediate investment based on their risk

preferences.

In conclusion, ROA is a powerful tool that arms managers with a better appreciation of value

inherent in projects. We therefore recommend that ROA should be used in conjunction with

standard methods especially where volatility and managerial flexibility are significant so as

to avoid undervaluing projects and thus leaving potentially highly profitable projects. It is

also very useful for timing investment as was demonstrated in our analysis of the basalt quarry.

The Real Options methodology equips managers with a stochastic perspective on project value,

which translates into better valuation. ROA is a powerful tool but not omniscient and should

thus be used circumspectly.
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