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Abstract

Malaria is one of the major public health hazards in the developing world in terms

of infection, morbidity and mortality, with at least 300 million acute cases of malaria

each year globally, resulting in more than a million deaths. The most vulnerable pop-

ulations are pregnant women, their unborn babies and children under five years of

age. Plasmodium falciparum, a parasite spread by the female anopheles mosquito, is

the most common cause of malaria in humans and is responsible for almost all deaths

associated with this case, followed by rare plasmodium vivax, popularly known for

malaria relapse cases. In this thesis, we study the in-host dynamics of malaria (plas-

modium falciparum and plasmodium vivax) based on the early work of Anderson

et al’s inhost models. We begin our research by reviewing Anderson et al (1989)’s

model and incorporate treatment to the model. A drug efficacy threshold ε approx-

imately equal to 0.9952 for which the parasite is cleared from the host’s blood was

determined using numerical simulations.

We model the transplacental transmission of plasmodium falciparum (P.falciparum)

malaria in pregnant mothers. A treatment model for the transplacental transmis-

sion of P.falciparum malaria in pregnant mothers with and without time delay was

developed. The model is considered , first without delay and intervention and then

xiv
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with treatment of the infected mother with Artemisinin-based combination therapies

(ACTs) and injectable artesunate (AS). The model without delay, (4.8)-(4.13), is

shown to possess three infected states, that is, an infected state where the erythro-

cytic infection in the host is active but latent in the foetus that is locally stable for

R0at > 1 and R0ft < 1, a state where the erythrocytic infections are active in both the

mother and the foetus which is locally stable for R0at > 1 and R0ft > 1, and lastly,

a state where the erythrocytic infections are under control in the mother but active

in the foetus which exist for for R0at < 1 and R0ft > 1. For the model incorporating

treatment, the model reproduction numbers, R0ft and R0at are computed and numer-

ical simulations carried out show that administering antimalarial drugs with a drug

efficacy level of between 0.982 and 0.983, exclusively, will help in completely wiping

out the malaria parasite in both the mother and foetus at an estimated placental

drug transfer permiability factor of at least η = 0.97. For the model with delay, we

investigate the effect of intracellular delay on the stability of the parasite present

equilibrium state. A critical condition is given to ensure that the parasite-present

steady state is asymptotically stable for all delays.

We also considers how the stability of the basic malaria model is altered by a Brownian

diffusion structure. We first consider a model with constant diffusion matrix and

show that for this diffusion structure, the revised Anderson et al model possesses two

steady states, the parasite-free and parasite-present steady states whose stability is

degraded by the diffusion term. This type of diffusion can be used to study infections

whose states can switch from parasite-free to parasite-present and vice versa, such as

P.falciparum. Secondly, we consider models with a variable diffusion matrix, and
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find that models with this diffusion structure only possess parasite-present steady

states and can be used to study infections which maintain unstable parasite-present

states with relapse tendencies, like P.vivax.



Acronyms

ACTs-Arteminin -based Combination therapies

AS-Artesunate

RBCs-uninfected red blood cells

IRBCs-infected red blood cells

TNFα-Tumor Necrosis Factor-alpha

ITNs-Insecticide-treated nets

IPT-Intermittent preventive treatment

SMP-Safe motherhood programs
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Chapter 1

Introduction

1.1 Background

The four malaria plasmodium species that can infect and be transmitted by humans

are, Plasmodium Falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmod-

ium malariae. These parasites are transmitted to humans mainly via a bite of an

infected female anopheles mosquito [1]. However, there are other ways in which the

parasite can be transmitted namely, (i) a pregnant woman infected with malaria

transmitting the infection to a foetus (congenital transmission), (ii) through transfu-

sion of blood infected with malaria parasites to a healthy individual in need of blood,

(iii) sharing of needles between an individual infected with the malaria parasites and

a healthy individual and (iv) through organ transplant, although these transmission

mechanisms are rare [2].

Globally, an estimated 3.3 billion people are at risk of being infected with malaria

2
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according to the World Health Organization (WHO) report of 2011 [1]. This risk

is greatest in sub-Sahara Africa, which contributes about 80% of reported clinical

malaria cases and 90% of malaria related deaths [1]. Most of the deaths attributed

to malaria in this region occur among pregnant women and children under the age of

five.

Since the study on malaria transmission in 1911 by Sir Ronald Ross, several studies

have been conducted on malaria transmission to ascertain the effectiveness of control,

elimination and eradication programs. Malaria control programs are based on the

assumption that if the human population is kept malaria-free through administration

of prophylaxis and treatment drugs and vector control programs then herd immunity

among humans can be achieved [5, 6] resulting in a parasite-free vector population

as was the case for smallpox [7] . However, the last two decades have shown that the

vector develops resistance to treatment drugs making malaria treatment less effective

if it is implemented as a mono-therapy strategy. This in turn has exerted pressure on

treatment drug development programs.

Regional malaria elimination programs conducted in the 1940’s managed to eliminate

malaria from Europe, North America and parts of Asia but proved to be ineffective

in sub-Sahara Africa. The success of the elimination program in Western countries

and parts of Asia gives hope to sub-Sahara Africa that elimination is possible if the

right conditions prevail. Some parts of sub-Sahara Africa are endemic to conflicts,

wars etc resulting from cultural and religious beliefs (or differences). The question is

whether vector elimination on a continent which faces many logistical and economical
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problems is achievable. Between 1950 and 1975 both treatment and vector control

programs were used in sub-Sahara Africa as parasite elimination strategies with huge

successes but drug resistant strains of the mosquito have eroded the successes. For

now control appears to be the best option even though in the long run eradication

should be the goal.

It has been shown that reducing transmission does not necessarily reduce the inci-

dence of severe malaria cases and mortality [4]. Studies such as that by Trape and

Rogier [5] led to studies on the immune response to parasite infection [10]. Anderson

et al [10] have described the red blood cell-parasite dynamics that have been exploited

by many subsequent studies [3, 8, 11, 23]. Our immunological study is a sequel to the

deterministic studies by Anderson et al [10], Hoshen et al [3] and Macqueen et al [8].

1.2 Statement of the problem

The emerging and re-emerging diseases have led to a revived interest in infectious

diseases. Mathematical models have become important tools in analyzing the spread

and control of infectious diseases. In 1926 Kermack and Mckendrick published results

from their mathematical models which established epidemic threshold results for an

epidemic outbreak to occur [9]. Since then, mathematical epidemiology has grown

exponentially and is being used to simplify the understanding of infection progression

and to make projections on the long term dynamics of an infection.

Malaria is one such infection on which mathematical models have yielded tremendous

results. The host’s inversion by a malaria parasite and the chemo-effects of the anti-
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malarial drugs on the parasite are very complex processes that require application of

mathematical models.

1.3 Methodolody

In this study, we use non-linear systems of ordinary differential equations to explain

the progression of the malaria parasite within the human host, using the revised An-

derson et al (1989) model. For the systems of equations, we calculate steady states

such as parasite-free and parasite-present equilibria, and investigate their dynamic

stability in terms of the basic reproduction number, Ro. Biologically, threshold pa-

rameters are important to determine whether the parasite infection gets suppressed

or persists within the host. Constant treatment parameters are used to evaluate the

benefits of treatment on malaria infection as projected by the models in the numeri-

cal simulations. We then establish a threshold drug efficacy parameter for which the

parasite level will be suppressed down to zero. For the case of transplacental trans-

mission of malaria in pregnant mothers, we formulate a system of delay differential

equations for the parasite interaction with the red blood cells of the mother as well as

that of the foetus. We seek to gain insight into how transmission of the infection to

the foetus can be prevented. We analyse the vertical transmission model under three

scenarios:

1. no time delay and no treatment,

2. no time delay with treatment, and
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3. time delay without treatment.

Under scenario 1, we determine the local and global stabilities of the parasite-free and

parasite-present equilibria in both the mother and the foetus and determine threshold

conditions under which the parasite fails to establish itself. Under scenario 2, treat-

ment was also incorporated into the model and threshold drug efficacy level for the

complete eradication of the parasite in both the mother and foetus was determined.

For scenario 3, intracellular delay effect was investigated and a critical condition to

ensure that the parasite-present steady state is asymptotically stable for all delays

was established. Numerical simulations have been used to confirm our analytical re-

sults.

Lastly, we formulated a stochastic model based on the revised Anderson et al (1989)’s

deterministic model. The stochastic model incorporates stochastic noises described

by two different diffusion structures namely constant diffusion and linear diffusion.

We prove the existence of solutions of the stochastic models and their biological fea-

sibility. We then show how the asymptotic stability of the deterministic system is

degraded by the constant diffusion and varying diffusion terms. Patients’ data is then

used to validate our model results.

At the end, we discuss the biological importance of our results and how these results

can be used in the verification of existing public health policies, its contribution to

the creation of new health policies or as an eye opener to the health policy advisors

on alternative approaches to the analysis of parasite dynamics in humans.
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1.4 Objectives

In contributing to the knowledge of Malaria infection within the host, this study seeks

to understand the infection by addressing the following scenarios:

1. Reviewing the Anderson, May and Gupta’s (1989) human host and malaria par-

asite interaction deterministc model and determine the threshold drug efficacy

for reducing the parasitemia within the host to zero level.

2. To understand the host-parasite dynamics in pregnant mothers.

3. To underline the need for a shift of analysis, from deterministic to stochastic

analysis of the within host parasite dynamics

4. To demonstrate the importance of understanding dynamical interactions, deter-

ministic and stochastic dynamics and the associated non-linear relationships, in

interpreting observed clinical patterns in the interactions of the malaria parasite

with the host’s immune system and within populations of hosts.

1.5 Significance

Malaria infection has been affected by various factors, among others, drug resistance,

treatment defaults, climatic changes, changes in disposable incomes among nations

and other socio-political factors such as wars. This study’s focus is on addition of

emphasis to the importance of treatment and drug efficacy in the case management of

malaria. Since a lot is yet to be understood on the within host interactions of the red
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blood cells (RBCs) and the malaria parasite in the most sensitive group of pregnant

mothers and its effects on the foetus, this study will provide an insight on the probable

transplacental transmission of malaria. It provides, as well, a strong foundation for the

importance of stochastic modeling and analysis on the more accurate accountability of

the parasite dynamics within the host. In addition to this, this study will contribute

to the public health knowledge on malaria case management.

1.6 Scope

Chapter 1 of this thesis looks at the introduction, where the background information

of Malaria epidemiology and immunology is given. The objectives, problem, signif-

icance and scope of the research are spelt out in this chapter. Chapter 2 gives the

literature review which includes the history, global statistics of malaria morbidity

and mortality and the previous studies on malaria epidemiology, and immunology.

Chapter 2 will serve as a motivational ground that forms the foundation and order

of this research. Chapter 3 provides an analysis of the pioneering study by Ander-

son et al (1989) and extends the ideas by incorporating the effects of treatment in

the erythrocytic stage interaction between the malaria parasite and the host’s red

blood cells (RBCs). In Chapter 4, we extend the idea in Chapter 3 and focus on the

erythrocytic stage of the malaria parasite-host interactions in pregnant mothers with

intracellular delay. Experimental findings of White [21] and the genetic heterogene-

ity in host-parasite populations [10] gives birth to Chapter 5, which examines the

Stochastic interaction of the erythrocytic stage malaria parasite and the host’s red
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blood cells. The thesis ends with Chapter 6, which gives conclusions and discussions

on the major results obtained in the research.



Chapter 2

Literature Review

Malaria is an ancient disease. According to Fransis Cox [12], the early Greeks, in-

cluding Homer in about 8500 BC, Empedocules of Agrigentum in about 550 BC

and Hippocrates in about 400 BC, were well aware of the characteristic poor health,

malarial fevers and enlarged spleens observed in individuals residing in marshy areas.

Cox [12] further states that for over 2500 years, the idea that malaria fevers were

caused by miasmas rising from swamps persisted and it is widely believed that the

word ’malaria’ comes from the Italian ’mal’aria’ meaning spoiled air.

Studies only became possible after the discovery of the parasites themselves by Charles

Luise Alphonse Lavera in 1888 and the incrimination of mosquitoes as the vectors,

first for avian malaria by Ronald Ross in 1887 and then for human malaria by the

Italian scientists between 1898 and 1900 [12].

Malaria is a vector-borne infectious disease caused by protozoan parasites of the genus

Plasmodium, prevalent throughout sub-Saharan Africa, most parts of Latin America

and Asia. Each year, there are approximately 300 million cases of malaria, killing

10
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over one million people annually, the majority of whom are children in Sub-Saharan

Africa [48].

Below (Figures 2.1,2.2, 2.3) are graphs drawn using the data from [14] showing the

distribution of reported malaria cases and deaths according to the World Health Or-

ganization (WHO) statistics from the year 2000 to 2010. In areas of stable malaria

Figure 2.1: The graphs shows trends of WHO estimated cases of malaria in the WHO

regions of the world.

transmission, very young children and pregnant women are the population groups

at highest risk for malaria morbidity and mortality with most children experiencing

their first malaria infections during the first year or two of life, when they have not

yet acquired adequate clinical immunity [1].

Figure 2.1 show the trend of estimated malaria cases in the World Health Organiza-

tion (WHO) regions of the world. Figure 2.2 show the estimated number of malaria

deaths in children under 5 years of age. Figure 2.3 illustrate the dominance of malaria

as the leading cause of death in children under the age of 5 in Africa compared to
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other diseases like HIV-AIDS and Diarrhoea.

Figure 2.2: Trends in the cause of death in children under 5 years of age

Figure 2.3: Trends in the cause of death in children under 5 years of age

Malaria parasites are transmitted to humans by female Anopheles mosquito bites and

they multiply within red blood cells (gametocytes), causing symptoms of anemia (light

headaches, shortness of breath, tachycardia, etc) as well as other general symptoms
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such as fever, chills, nausea, flu-like illness, and in severe cases, comma and death

[46].

The malaria parasite exhibits a complex life cycle. The mosquitoes are infected with

the parasite as they feed on the blood of infected humans. In the mosquito’s gut

the gametocytes (male and female) from the infected person fuse to form ookinete

that penetrate the gut lining and produce an oocyst in the gut wall. When the

oocyst ruptures, it releases sporozoites that migrate through the mosquito’s body to

the salivary glands sporozoites. The mosquito then becomes infectious and will be

ready to infect a new individual. Once within the humans the malaria undergoes

two phases, an exoerythrocytic which involves maturation and development of the

parasite (sporozoites) in the liver. These sporozoites infect hepatocytes and as a

result the sporozoites multiplies in about 6-15 days. The parasites then replicate into

thousands of merozoites within the hepatocytes causing the rupture of the host cells

and release into the blood. With Plasmodium vivax (P.vivax) and Plasmodium ovale

(P.ovale), the sprozoites may, sometimes, not immediately go into exoerythrocytic

phase merozoites, but produce hypnozoites that lie dormant in the liver (for about

6-12 months to around 3 years) resulting in late relapses of malaria due to long

incubation. In the erythrocytic phase, the merozoites multiply further asexually, in

the red blood cells (RBCs), and burst the RBCs releasing the merozoites in the blood.

Each burst is associated with a bout of fever [13, 15, 16, 17] (see Figure 2.4).

Repeated invasion of RBCs and the subsequent death of infected erythrocytes results

in a depression in RBCs density in an infected person and a 50% or more reduction
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Figure 2.4: Diagram of the malaria parasite’s life cycle
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in the density may occur in severe cases of infection with further bursts and bouts of

fever [10].

Although some vaccines are under development, no vaccine is currently available for

malaria but preventive prophylactic drugs are usually taken continuously to reduce the

risk of infection. Therapy drugs such as quinine or artemisinin derivatives, are avail-

able to treat already infected individuals. Rising mortality is linked to the growing

incidence of chloroquine-resistant Plasmodium faciparum (P. falciparum) infections,

the most lethal malaria strain [45, 48]. The promotion and use of insecticide-treated

mosquito nets has become a leading strategy in malaria prevention and control [50].

On the sociopolitical and economic side, social, political, and economic changes, espe-

cially large scale uncontrolled population movements and ecological disturbances, all

contribute to the worsening malaria problem. Environmental change brought about

by development has created conditions suitable for malaria transmission, resulting in

resurgence in regions where malaria had previously been under control [44].

Children who survive malaria may suffer long-term consequences of the infection,

with repeated episodes of the fever and illness reducing appetite and restrict play,

social interactions, and educational opportunities thereby contributing to poor devel-

opment [44]. Malaria is said to be not just a disease associated with poverty, but is

also a cause of poverty. Two key determinants of the economic costs of malaria are

the direct costs of expenditure on prevention and treatment and the indirect costs of

productive labour time lost due to malaria morbidity and mortality [44].

However, malaria case management remains a vital component of the malaria control

strategies. This entails early diagnosis and prompt treatment with effective antimalar-
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ial medicines. The World Health Organization (WHO) guidelines for the treatment

of malaria [46], provide global evidence based recommendations on the case man-

agement of malaria, targeted mainly at policy-making at country level, providing a

framework for the development of specific national treatment protocols that include

local antimalarial drug resistance patterns and health service capacity in the country.

Antimalarial treatment cures the infection as rapidly as possible, and also prevents

progression to severe disease and morbidity associated with treatment failure. The

proportion of infected mosquitoes in a locality is related to the number of infected

and infectious humans in the area and, therefore, lowering the infectivity of the in-

fected persons to mosquito vectors will contribute to reducing malaria transmission,

and to eventually reducing the incidence and prevalence of the disease. Therefore,

public health goal of treatment is to reduce the infectious reservoir and to prevent

the emergence and spread of resistance to antimalarial medicines [46, 49].

Each year approximately 25 million African women become pregnant in malaria en-

demic areas. In malaria high transmission areas, some population groups are at

considerable high risk of infection with P. falciparum and development of malaria

morbidity or mortality than others and these include children under the age of five

years and pregnant women [24].

Placental malaria (also known as umbrical cord parasitemia) is defined as the accumu-

lation of Plasmodium-infected erythrocytes in the intervillous space in the placenta,

causing histologic changes including lencocyte-induced damage to the trophoblastic

basement membrane. It does not reflect the existence of peripheral infection over
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a short period preceeding the delivery or whether it is related to infection during

pregnancy. The principal effects of malaria infection during pregnancy are associated

with malaria-related anaemia in the mother and with the presence of parasites in

the placenta. Malaria contributes significantly to perinatal disease burden in terms

of pregnancy losses, prematurity due to pre-term labor and intra-uterine growth re-

tardation. Pregnant women are at high risk of malaria infection because pregnancy

causes a transient depression of cells mediated immunity. Age under 25 years and

primiparity are both risk factors for developing placental malaria and moreover, the

risk increases in the first and second trimester of pregnancy. Placental malaria is quite

common during Plasmodium falciparum infections, but less common in Plasmodium

vivax malaria infections. Plasmodium falciparum and Plasmodium vivax placental

mixed-infection can occur and P. vivax placental malaria may lead to some adverse

events as P.falciparum infection (see [24, 25, 31, 32, 33, 34, 35]).

Alterations of materno-fetal blood exchange are the basis of placental malaria. Dur-

ing infection, parasitized RBCs both from P. falciparum and P. vivax are sequestered

within the placenta and may accumulate in intervillous spaces. Trophosite and sch-

izont form may also accumulate in the placenta. The presence of infected red blood

cells (IRBCs) activates mononuclear cells which release chemokines to recruite ad-

ditional phagocytic cells in the intervillous spaces. IRBCs, leukocyte infiltration,

fibrin and hemozin deposits contribute to increasing the thickness of the trophoblast

basement membrane and to altering the intervillous and perivillous spaces, causing

reduction of oxygen and nutrient transport to the fetus [25, 36].

Control of malaria during pregnancy depends on both preventing infection and clear-
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ing parasitemia when it occurs. For decades the prophylaxis and treatment of malaria

during pregnancy has relied on chloroquine. Resistance of Plasimodium falciparum

to chloroquine and increasingly to sulfadoxine-pyrimethamine in Africa has resulted

in the use of other antimalarials in pregnancy such as Arteminisn Combination Ther-

apies(ACTs). However, in most areas of malaria transmission, highly effective pre-

vention interventions are needed such as intermittent preventive treatment (IPT) and

insecticide-treated nets (ITNs). IPT is based on the use of antimalaria drugs given in

treatment doses at predefined intervals after quickening (around 18-20 weeks of preg-

nancy). The World Health Organization(WHO) recommends IPT with an effective,

preferably one-dose, antimalarial drug to be provided in areas of stable transmission,

as part of antenatal care, starting after quickening. ITNs reduce human-vector con-

tact by physically excluding vector mosquitos, killing if they land on ITNs or repelling

them, thereby driving them from the vicinity of sleepers [31].

There are few studies in humans on the pharmacokinetics, safety and efficacy of an-

timalarials in pregnancy because pregnant women are systematically excluded from

clinical trials. The absence of adequate safety, especially in the first trimester, is an

important obstacle to developing treatment strategies [37, 38, 39].

With few exceptions, most of drugs that are ingested by a pregnant woman during

pregnancy can cross the placenta and reach the foetus via diffusion, facilitated diffu-

sion, active transport and phagocytosis or pinocytosis. The drugs may pose potential

danger to the foetus or newborn infant in view of their pharmacologic effects, side

effects, or complications [74].

Artemisinin-based combination therapies (ACTs) and injectable artesunate (AS) are
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currently recommended as the frontline antimalarial treatments for uncomplicated

and severe malaria, respectively. Despite possessing excellent therapeutic activity

and tolerability, neurotoxicity and embryotoxicity have been reported in cross-species

animal models [75]. Studies in animals are very valuable in indicating possible risks

in human from medicines. Artemisinin and its derivatives are considered safe and

effective in pregnant women who have been treated with artemisinin compounds, in-

cluding small doses in the first trimester [75] but according to a review by Dellicour

et al [76] on the possible relationship between artemisinin compounds and adverse

pregnancy outcomes, the authors concluded that current data are limited and the

published studies do not have adequate power to rule out rare serious adverse events,

even in second and third trimesters.

From documented publications and clinical data on malaria relapses, White [21]

has suggested possible postulations regarding the basic biology and epidemiology

of P.vivax relapse which need recognition and answers in order to adequately address

seriously the control and elimination of malaria parasites.

P.vivax malaria, which is endemic to Asia, Ocenia and South America and in the

horn of Africa, is a major cause of morbidity and an important contributor to early

pregnancy loss and reduced birth weight which increases in infancy. P.vivax malaria

is more difficult to eliminate than P.falciparum because of its tendency to relapse

after resolution of the primary infection. P.vivax relapse is the recurrences of P.vivax

malaria derived from persistant liver stages of the parasite (hypnozoites) and recrudes-

cence is the recurrence of P.vivax malaria derived from persistance of the blood stage
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infection. In endemic areas, relapse of vivax malaria is a major source of malaria

transmission [21]. The factors which control P.vivax malaria stochastic episodes of

relapse and determine their periodicity are not known, and the study by White [21]

identifies some possible causes with a review of documented clinical data and publi-

cations. White [21] has traced the historical episodes of relapses as far as 1913. Early

experimental work showed recurrences of vivax malaria commonly occurred many

months after successful treatment of the primary infection.

Relapse arises after the ’awakening’ of the hypnozoites and the subsequent intrahep-

atic schizogony followed by blood stage multiplication. From early data on relapse

patterns from Korean vivax malaria and tropical frequent relapse P.vivax, White [21]

noted that once the relapse had occurred (after a latency of 7-10 months), subsequent

relapses would then usually occur with intervals of approximately 3 to 4 weeks fol-

lowing quinine or 6 to 8 weeks of chroloquine treatment. According to White [21] ,

the data on artificial infection studies conducted in humans (17 USA volunters were

infected by a single mosquito bite with the Chesson strain of P.vivax and treated

with chroloquine) and experimental primates suggested that even with a single in-

fected mosquito bite some Chesson strain P.vivax infections relapse after intervals

which were as long as a year after a series of regular ’short interval’ relapse with non-

constant periodicity. The review noted the initial inter-relapse intervals of Chesson

strain P.vivax in volunteers and also P.cynomolgi in Rhesus monkeys being remark-

ably regular though with gradual lengthening in each successive relapse. White [21]

explained this as the simultaneous activation of several hypnozoites that will shorten

the relapse interval because the interval is measured until the progeny of most rapidly
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growing parasites cause patent infection. For more activated genetically identical hyp-

nozoites, relapse interval shortens than if one hypnozoite is activated. This is due to

natural phenotypic variation amongst genetically identical organisms and it is the

progeny of the earliest activated and most rapidly multiplying parasite that become

patent first. From clinical data on US volunteer, the interval from inoculation to

relapse (approximately 9 months later) shortening with increasing inocula was noted,

that is, the more hypnozoites that are activated the shorter is the average interval

between relapses. The review noted that, though in natural setting multiple geno-

typically distinct hypnozoites may be activated, in many occasions only one or two

genotypes will be detected at clinical relapse. Hypnozoites, may as well, reach pa-

tency later, or asexual growth may be suppressed by fever, illness, immune response,

and treatment such that they never reach patency. Larger doses of anti-malarials [21]

resulted in longer intervals to relapse consistent with a concentration-dependent slow-

ing of asexual rates and slowly eliminating anti-malarials delayed the onset of P.vivax

relapse, and consequently reduced their frequency, though the overall number of re-

lapses experienced did not appear to reduce. In trying to understand relapse, White

[21] argues that artificial infections provided invaluable information but they differed

from natural infections in several respects. Some of the differences are from the fact

that infections were in non-immune adults whereas the burden of vivax disease in

endemic areas have usually developed significant immunity to a broad range of local

parasites which controls symptoms and reduce parasite densities. Artificial infections

in the majority of volunteer studies carried out and in malaria therapy followed the

bites of 5-10 infected anopheline mosquitoes selected for maximal infectivity, based on
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salivary gland sporozoite loads in sibling mosquitoes and the timing of inoculation in

malaria therapy and experimental studies, contrasts with the natural setting where

anopheline mosquitoes display a wide rage of infectivities depending on sporozoite

age and other factors, White [21] argued. The study elaborates further that this ob-

servation resulted in reliable infections but did not bring out the important stochastic

component of P.vivax epidemilogy resulting from low sporozoite inocula in areas of

low seasonal transmission. Also, the ’strains’ of P.vivax used in the experiments were

likely to have been of single genotype or very closely related interbreeding genotypes

which were passed through a very large number of patients over many years, whereas

in contrast multiple unrelated genotype infections are common in natural infections.

In tracking the periodicity of relapse, White [21] noted, from the data on US volun-

teers who were infected with a Chasson strain of P.vivax that the number of relapses

varied with the seven volunters who were not reinfected having a mediam number

of relapses of five (one of nine) following a single bite and 11 of the 39 relapses in

this group (28 percent) occurred more than six months after the initial infection. The

interval from one relapse to the next was similar but overall the inter-relapse intervals

gradually lengthened; which proves that long -latency does occur with the tropical

frequent relapse phenotype.

The importance to understand inhost malaria dymanics has led to the development

of a vast of mathematical models. Anderson et al [10] demonstrated the importance

of non-linear relationships in dynamical systems at a series of different interactions

with the aim of stressing the importance of understanding dynamical interactions,

interpreting observed patterns in the interactions of parasitic organisms with the
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host’s immune system and with populations of hosts. The study [10] focused on the

transmission dynamics of parasitic organisms and control methods that influence the

prevalence or intensity of infection. It examined the impact of mass vaccination and

community based chemotherapy programmes, the relative merits of sporozoite and

gametocyte targeted vaccines in infection prevention by malaria parasites and con-

comittant disease. The study [10] describes the complications introduced by genetic

heterogeneity in host-parasite population interactions and the impact of selective pres-

sures induced by the host’s immune system or the application of chemotherapeutic

agents on the transmission dynamics of heminth parasites. The study examined the

interactions between malaria parasites and the host’s immunological responses and in

particular, investigated the impact of the immune differentiation to target merozoites

and the infected erythrocytes during the erythrocytic stages of malaria.

The Anderson et al [10] model possesses a parasite-free and a parasite-present equilib-

rium states. The stability analysis showed that both parasite-free and parasite-present

states are locally asymptotically stable but with exhibitions of periodic damped os-

cillations to equilibrium. In the same work, Anderson et al [10] explored the impact

of immunological responses directed against merozoites and the impact of immuno-

logical responses directed againts infected erythrocytes. The threshold condition for

the immune system targeting merozoites was derived and in their conclusions it was

noted that if the proliferation rate of specific lymphocytes is high enough, the derived

threshold for the immune system reduces back to the threshold of the basic model.

The work also suggested an extreme difficulty in the eradication of the parasite from

the host by antibody-mediated attack against the free merozoites alone. The immune
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response targeted against infected erythrocytes was found to be able to eliminate

the parasite from the host after the initial ’epidemic’ of infected cells, while the one

targeted against merozoites is not.

Time delays of different types have been incorporated into biological models by many

authors (for example [3],[80],[82]). Generally, delay differential equations exhibit more

complicated dynamics than the ordinary differential equations since a time delay could

cause a stable equilibrium to become unstable and cause fluctuations in populations.

Calshaw and Ruan [80] incorporated a discrete time delay to the model on HIV

infection of CD4+ T cells, to describe the time between infection of a CD4+ and the

emission of viral particuleson a cellular level. They showed that the infected steady

state of the model is stable, independent of the size of the delay, meaning that delay

can cause the CD4+ T cells and HIV virus populations to fluctuate in the early stage

of infection and converge to the infected state values in the long term.

In a similar work, Wang et al [82] developed and analysed an inhost viral model

with cure of infected cells and humoral immunity. The study showed that time

delay beyond some critical value may cause a stable endemic equilibrium point to be

unstable.

In another study, Hoshen et al [3] reviewed Anderson et al ’s basic model on the red

blood cells and parasite interactions. In the study, Hoshen et al [3] argued that the

mathematical model used in Aderson et al is highly nonlinear which makes analytical

solutions difficult and thus dependent on guessing the parameters to fit experimental

data and that synchronicity of malaria infections or periodicity of symptoms is not
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accounted for by the model. The Hoshen et al [3] model explicitly introduced a

parameter for the life-span of the infected red blood cells caused by macrophage

attack on signaled erythrocytes or by protection against the re-invading merozoites

(onset of host immunity) and introduced time delay in the dynamics.

These arguments led to proposing a system of linear delayed differential equations

models and obtained solutions for the RBCs and IRBCs populations at any time as

functions of the delay. Hoshen et al [3] compared the analytic results with clinical data

and observed that the absence of a clear cyclical drop in parasitemia is a result of their

model presenting the total parasitemia, while in vivo for human P.falciparum, only

the circulating parasitemia, that is, ring stage parasites are measured. The work [3]

also examined synchrony of parasites and wandered whether synchrony (rythmic fluc-

tuations in the bloodstream parasitemia) would be expected from the asynchronous

release of merozoites from the liver? Simulations in [3] were carried out under the

assumption that parasites are released over the first half of the parasite cycle or over

the whole cycle at uniform density with 16-fold multiplication rate per cycle and with

no killing fron the immune response. In the absence of immune clearance, periodic

fluctuations in total parasitemia were observed but in the presence of the immune

response at constant kill rate, large fluctuations in total parasitemia are observed.

From these results, Hoshen et al [3] proposed that synchrony of parasites is genetic

as a result of stochastic fluctuations in the individual periodicity of the parasite cycle.

Chiyaka et al [18] developed a model based on Anderson et al by including the re-

sponse of the immune system. Their model assumed five interaction species, the

RBCs, IRBCs, merozoites, immune cells and antibodies. The authors [18] assumed



PhD Thesis 26

that i) the supply rate of RBCs from the bone marrow is accelerated by the presence

of IRBCs, ii) production rate of merozoites is reduced by immune cells, and that

iii)antibodies that block invasion of RBCs proliferate in the presence of merozoites.

The model was analyzed and a globally stable parasite-free equlibrium was com-

puted together with the intra-host basic reproductive number. Numerical simulations

were used to confirm the existence and stability of the parasite-present equilibrium.

Chiyaka et al [18] extended the immune response model by incorporationg drug ther-

apy. The effective reproductive number, which measures the number of secondary

infections generated by a single parasitized RBC in an environment when antimalar-

ial drugs are administered as a control strategy was computed, and the critical drug

efficacy determined when the parasite can be cleared in the blood. Chiyaka et al [18]’s

results show that without treatment the most effective part of the immune response

in its mission to clear parasites is its ability to inhibit parasite growth in erythrocytes.

They recommended that drugs specifically targeting infected red blood cells targeted

and those targeting merozoites should be made available to make treatment more

effective.

Yilong Li et al [19] looked at the blood stage dynamics of malaria in an infected host

by incorporating the interactions of four populations, RBCs, IRBCs, malaria parasite

and immune effectors with nonlinear bounded Michaelis-Menten-Monod functions de-

scribing how immune cells interact with the IRBCs and merozoites. That study [19] ,

computed the model parasite-free equilibrium and showed showed that this state was

globally stable but only established the local stability of the parasite-present equilib-

rium. The study [19] also shows conditions for the occurance of Hopf birfucation and
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periodic solutions near the parasite-present equilibrium.

Friedman and Lungu [11] developed the immune response in-host model for malaria

which involves the role of cytokines. That model [11] assumed a density dependent

control mechanism for the parasite population. The basic model was then extended

to include dual therapy namely TNFα externally injected and generic drug treat-

ment that decreases the efficacy of extracellular parasites. In an attempt to measure

the influence of the adaptive immune response, the model reproduction number, in

an environment with treatment, was computed and sensitivity analysis to show the

impact of the various parameters on the reproduction number was done. Their sen-

sitivity results showed a highly positive correlation of the reproduction number to

the intracellular parasite growth rate and a highly negative correlation to the natural

death rate of IRBCs and the intracellular parasite related parameter (n). Numerical

simulations showed the replication of extracellular parasites in the host to be fastest

for the intracellular parasite for values of the parameter n in the range 8 ≤ n < 15.

Particularly, n = 8 the parasite growth is fastest. The authors determined a thresh-

old drug efficacy for which treatment with efficacy greater than the threshold, the

parasite level in the blood stream will be reduced to zero. From their findings, Avner

and Lungu [11] recommended dual therapy, of generic and cytokine based drugs, as

the best strategy to follow to prevent parasites from developing resistance to malaria

treatment drugs.

The accuracy of the results derived from existing deterministic in-host models was dis-

cussed in Saul [20]. Saul [20] suggests that mathematical models of in-host dynamics

for malaria parasites by Anderson et al and researches may not be accurate and may
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lead to significant over-estimates in parasite growth rates. In [20], the author argues

that the assumptions in Anderson et al ’s model that all red blood cell destruction in

addition to the normal removal of old red cells, is due only to the rapture of IRBCs

and, that the life of an infected red cell follows an exponential decay with an average

span equal to the parasite growth cycle (48 hr for P.falciparum) contrasts with the

essentially discontinuous process which occurs in nature. Saul [20] argues that, al-

though it seems obvious that the rate at which merozoites are being released should

be the number of merozoites times the rupture rate of schizonts, there is evidence of

errors in this term. In this study, Saul [20] gave examples of the sources of error in

the modelling process. He considered a situation where the number of RBCs will be

nearly constant under initial conditions with experimental work showing that under

these conditions nearly all merozoites invade and there is an exponential increase in

parasitemia. He suggestd that under these conditions the growth rate should be taken

to be αr ( Anderson et al ). The study suggests an alternative strategy of describing

in-host dynamics, not as a series of differential equations relying on rate constants,

but as recursion equations that describe population at discrete times in terms of the

multiplication factors which occurs between different stages and the probability of

surviving from one time point to the next and the size of the population at a previous

time which leads to computationally efficient deterministic and stochastic simulations

of population dynamics and simpler analytical solutions for equilibrium situations.

In response to Saul, Gravenor and Lloyd [22] argued that replacing the parameter for

the number of merozoites produced (r) by each parasite at schizogony with ln(r) + 1

does not address the true underlying problem with the model, that is, the use of the
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constant rate α assumes an exponential and hence much more variable distribution.

The authors suggested the addition of more age compartments to the intracellular

parasite stage. n categories were introduced, that is, as a parasite matures, it passes

through these categories in a sequence, with constant transition rates between cat-

egories. By so doing, the overall parasite life-span is described by a sum of many

exponential distributions, which is considerably less variable than the single expo-

nential distribution used in Anderson et al and Saul [20]. When Gravenor and Lloyd

[22] compared their model results with that of Anderson et al ,they noted that their

model leads to equilibrium solutions that are identical to those obtained from their

expanded model. They concluded that erythrocyte competition alone is insufficient

to regulate parasitemia and that low parasitemias can potentially account for con-

siderably more erythrocyte distribution than expected. The authors [22] pointed out

that including age structures in the basic Anderson et al ’s models has the benefit of

addressing the key biological questions relevant to P. falciparum infection. However,

they acknowledged the use of constant rates to describe life-span as an attractive

starting point , though unrealistic in many biological systems.

Niger and Gumel [23] incorporated an n stage parasite life cycle, immune cells and

antibodies in the Anderson et al (1989)’s basic model as suggested by Gravenor and

Lloyd [22] in response to Saul [20]. The model [23] was shown to be biologically feasi-

ble. The model’s parasite-free equilibrium and the basic reproduction numbers were

computed. The local and global stability conditions for the parasite-free equilibrium

were determined . As in Anderson et al, Niger and Gumel [23] included immune

respose to the n stage basic model. The parasite-free equilibrium and the immune
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reproduction number for this extended model were computed and it was shown that

the parasite-free equilibrium is globally stable when the corresponding reproduction

number is less than unity. This stability criterion was confirmed by numerical simula-

tions. In the study [23], the immune response n- staged model was further extended to

incorporate potential imperfect malaria vaccines which block the transmission of in-

fection, enhances an immune response, reduces the number of merozoites released per

burst of an IRBC and enhances the production of antibodies. The model’s parasite-

free equlibrium and the corresponding vaccine reproduction number which depend

on the n stages transition rates was computed. The parasite-free equilibrium was

shown to be globally stable whenever the reproduction number was less than unity.

The vaccine critical efficacy was computed and numerical simulations of the model

revealed that an imperfect vaccine with efficacy of at least 87 percent can lead to the

effective control of malaria in vivo. The authors pointed out that a malaria vaccine

that decreases the total number of merozoites released per bursting IRBC reduces the

concentration of IRBC in vivo and that a vaccine that reduces the immune response

decreases the concentration of IRBC in vivo, and hence recommended for candidate

vaccines that meet these conditions as the best strategy in the control of malaria.

In a study on stochastic pertubations, Aguirre Pablo [40] was interested in investigat-

ing the dynamics of a species subjected to a predation-driven Allee effect. Alleee effect

is a situation of a low density prey population that faces difficulties to grow and avoid

extinction. The author considered two classes of stochastic models of predator-prey

interaction with Allee effect on the prey. The first class incorporated an additive Allee

effect in the prey growth rate and the second class incorporated multiplicative Allee
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effect to the logistic growth rate in the prey population. In both models, it was shown

that the models were well posed, and in the absence of random noise, all solutions are

bounded. It was also shown that the models’ solutions exist and are pathwise unique

and have bounded moments. In response to his aim, Pablo [40] found that if both

populations (predator and prey) have a low density, the trajectories of the stochastic

system tend to be the same as that of the associated deterministic model and hence

concluded that the time evolution of the species is increasingly governed by the Allee

effect. By the additive and multiplicative Allee effect approach, the author also found

that environmental randomness effect is stronger for higher population sizes.

In the study by Viet et al [41], the Volterra type predator-prey model with the

Beddington-DeAngelis functional response ,that is, a functional response that de-

pends on both prey’s and predator’s densities and not only on prey’s density under

random fluctuations, was considered. The aim of the study was to study the exis-

tence, uniqueness and positivity of solutions of the modified Volterra model and to

analyze the asymptotic properties of the stochastic predator-prey model in population

dynamics with the intention of wanting to know the extinction rate of each species,

the information vital for suitable policy in investment and for timely measures in

protecting these species from the extinct disaster. The modified Volterra model so-

lutions were shown to exist and to be locally unique for some time up to but not to

explosion time of the model coefficients that are locally Lipschitz continuous. The

model solutions were also shown to be global, using the localization technique. The

study of asymptotic moments behaviour of stochastic models models helps in gaining

a deeper insight of the underlying process since most models have no explicit solu-
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tions. In this study [41], the model was shown to have bounded moments. The long

term behaviour of the solutions was studied when there is no noise (deterministic)

and when there are stochastic pertubations and it was found that a relatively large

stochastic pertubation can cause the extinction of the population which can serve as

a warning for us to have a timely decision to protect species in our ecosystem.



Chapter 3

Inhost Malaria model with

treatment

3.1 Introduction

Recently, there has been several studies [3, 11, 19, 20, 22] on in-host mathematical

modeling of the dynamics of malaria infections. The starting point for all these studies

is the study by Anderson et al [10] which models the blood-stage asexual cycle of the

malaria parasite, which included the infection of erythrocytes (RBCs) by merozoites.

The Anderson et al study models the malaria parasite infection of red blood cells

using the following system of coupled deterministic differential equations:

Ṙ = πa − µrR− βaRP

Ṙi = βaRP − αRi

Ṗ = αrRi − µpP − βaRP

(3.1)

33



PhD Thesis 34

where R denotes the uninfected red blood cell (RBC) concentration (per µl), Ri

denotes the concentration of infected red blood cells (IRBC) and P represents the

merozoite population. We assume that bone-marrow erythropoiesis is at a fixed rate

πa, and the normal decay of RBCs is a first-order process at a constant rate µr.

Merozoites are released from bursting of the IRBCs at a rate α, with a multiplication

rate of r per cycle. The merozoites population is reduced by invading fresh RBCs at

a rate βa, and due to natural death at a constant rate µp.

3.1.1 Positivity of solutions

We can show that the Anderson et al [10] model (3.1) is positively invariant, a nec-

essary and sufficient condition for the model to be useful to study the infection dy-

namics.

Lemma 3.1.1 Consider a system of differential inequalities

dxi
dt
≥ Aixi +

n∑
j=1

Bijxj + ε (i = 1, · · · · · ·n) (3.2)

where

Bij ≥ 0, ε ≥ 0.

If xi(0) ≥ ε for i = 1, · · · · · · , n, then xi(t) ≥ 0 for all t > 0 and 1 ≤ i ≤ n.

Proof Without loss of generality we may assume that ε > 0, since the case ε = 0

follows by approximating the system with a sequence ε = εk, εk ↓ 0.

Suppose the assertion xi(0) ≥ ε > 0, for 1 ≤ i ≤ n, is not true. Then there exists a
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smallest number t0 > 0, such that

xi(t) > 0 for 1 ≤ i ≤ n, 0 ≤ t < t0

xi(t0) = 0 for at least one i, say i = i0.

Then xi0 is a decreasing function at t = t0, so that

dxi0
dt

(t0) ≤ 0.

From the differential inequality (3.2) for xi0(t) we get

dxi0
dt

(t0) ≥
n∑
j=1

Bijxj(t0) + ε ≥ ε > 0

which is a contradiction. Hence , if xi(0) ≥ ε for i = 1, .., n then xi(t) ≥ 0 for all

t > 0 and 1 ≤ i ≤ n.

3.1.2 Analysis of the model

Intra-host basic reproductive number and stability analysis

Following Molineaux and Dietz [42], we define the intra-host basic reproductive num-

ber R0 as the number of secondary infected red blood cells (IRBCs) produced per

primary infected red blood cell (IRBC) in a host at the beginning of infection. If

R0 < 1, then on average an IRBC produces less than one new IRBC and the infection

cannot grow. However, if R0 > 1, then on average each IRBC produces more than

one new IRBC and the infection persists.

Following the next generation operator method (Diekman et al [43]; van den Driess-

che and Watmough [52]), the matrices F and V −1 for the system (3.1) are given

by:



PhD Thesis 36

F =

 0 βaπa
µr

0 0

 , V −1 =

 1
α

0

rµr
µpµr+βaπ

µr
µpµr+βaπa

 . (3.3)

The matrix FV −1 is called the next generation matrix [43] and the reproductive

number R0, is the dominant eigenvalue of FV −1.

For the model (3.1), this number is given by:

R0 =
rβaπa

µrµp + βaπa
.

Model (3.1) has two steady states, the parasite-free steady state given by

E0 = (R∗, R∗i , P
∗) =

(
πa
µr
, 0, 0

)
and the parasite-present steady state given by

Ep = (R∗∗, R∗∗i , P
∗∗) ,

where

R∗∗ =
µp

(r − 1)βa
, R∗∗i =

πaβa + µrµp
α(r − 1)

(R0 − 1), P ∗∗ =
πaβa + µrµp

µpβa
(R0 − 1)

which exists if and only if and only if R0 > 1.

Local stability of parasite-free equilibrium

The Jacobian of (3.1) evaluated at the parasite-free equilibrium, E0, is

JE0 =


−µr 0 −βaπa

µr

0 −α βaπa
µr

0 αr −µpµr+βaπa
µr

 . (3.4)



PhD Thesis 37

For the parasite-free equilibrium to be locally stable, all the real parts of the eigen-

values of the characteristic equation |JE0 − λI| = 0, should be negative.

One of the eigenvalues of this characteristic equation is λ1 = −µr and the other

eigenvalues are obtained from

λ2 + (α + µp +
βaπa
µr

)λ+
α

µr
(µrµp + βaπa)(1−R0) = 0. (3.5)

The roots of (3.5) have negative real parts if 1−R0 > 0, that is, if and only if R0 < 1.

We can summarize this as follows:

Theorem 3.1.2 The parasite-free equilibrium is locally asymptotically stable if R0 <

1 and unstable otherwise.

Global stability of parasite-free equilibrium

The technique for proving the global stability by Carlos Castillo Chavez et al [53] is

summarized in the following lemma:

Lemma 3.1.3 If a system can be written in the form:

dX

dt
= F (x, Z)

dZ

dt
= G(X,Z), G(x,0), (3.6)

where X ∈ Rm denotes (its components) the number of uninfected individuals and

Z ∈ Rn denotes (its components) the number of infected individuals including latent,

infectious, etc, and Uo = (x∗,0) denotes the disease-free equilibrium of the system kin
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question, and if the following conditions (H1) and (H2) below are met to guarantee

local asymptotic stability

(H1) For
dX

dt
= F (X, 0), X∗ is globally asymptotically stable(G.A.S)

(H2) G(X,Z) = AZ − Ĝ(X,Z) ≥ 0 for (X,Z) ∈ D, where A = DZG(X∗, 0) is an

M-matrix (the off diagonal elements of A are non-negative) and D is the region where

the model makes biological sense,

then the fixed point Uo = (x∗,0) is a globally asymptotically stable (g.a.s) equilibrium

of the biological system provided that Ro < 1 (l.a.s) and that assumptions (H1) and

(H2) are satisfied.

Theorem 3.1.4 The disease-free equilibrium point Eo of system (3.1) is globally

asymptotically stable (G.A.S) whenever 0 ≤ R0 < 1 and unstable otherwise.

Proof Using lemma (3.1.3), system (3.1) can be expressed as follows:

X = (R(t)), and Z = (Ri(t), P (t)). (3.7)

From A = DZG(X∗, 0), we have

A =

 −α βaR
∗

αr −(µp + βaR
∗)

 , (3.8)

and from G(X,Z) = AZ − Ĝ(X,Z), we have

Ĝ(X,Z) =

 Ĝ1

Ĝ2

 =

 βaP (R∗ −R)

0

 ≥ 0 (3.9)
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since R∗ ≥ R.

Local Stability of parasite-present equilibrium

Theorem 3.1.5 The parasite-present steady state Ep = (R∗∗, R∗∗i ), P ∗∗ is locally

asymptotically stable when Ro > 1 and unstable otherwise.

Proof From the Jacobian of model (3.1), evaluated at the parasite-present equilib-

rium, we obtain

JEp =


−µr − βaP ∗∗ 0 −βaR∗∗

βaP
∗∗ −α βaR

∗∗

−βaP ∗∗ αr −µp − βaR∗∗

 , (3.10)

and from the characteristic equation |JEp − λI| = 0 we have

λ3 + a2λ
2 + a1λ+ a0 = 0, (3.11)

where

a2 = µr + α + µp + βaP
∗∗ + βaR

∗∗,

a1 = α(µr + µp) + µpµr + (α + µp)βaP
∗∗ + (µr − (r − 1)α)βaR

∗∗ > 0

and

a0 = α(πaβa + µpµr)(R0 − 1) > 0

since R0 > 1.
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Using the Routh-Hurwitz stability theorem with n = 3, the coefficients of the charac-

teristic equation (3.11) are all positive when R0 > 1. Hence all the eigenvalues of the

Jacobian matrix (3.10) have negative real parts when R0 > 1 and the parasite-present

equilibrium point is locally asymptotically stable.

Theorem 3.1.6 The parasite present equilibrium state Ep is globally asymptotically

stable if

1. R0 > 1 and

2. (1− R
R∗∗

) and (1− P
P ∗∗

) have the same sign.

Proof We define the nonlinear Lyapunov function

V = (R−R∗∗ −R∗∗ lnR) + (Ri −R∗∗i −R∗∗i lnRi) +
1

r
(P − P ∗∗ − P ∗∗ lnP )

The time derivative of V for R0 > 1 reduces to

V̇ = µrR
∗∗
(

2− R

R∗∗
− R∗∗

R

)
+ βaR

∗∗P ∗∗
(

3− R∗∗

R
− R∗∗i P

∗∗

R∗∗i P
− RR∗∗i P

R∗∗RiP ∗∗

)
−

βaR
∗∗P ∗∗

r

(
1− R

R∗∗

)(
1− P

P ∗∗

)
.

As the arithmetic mean exceeds the geometric mean (see [23]),

2− R

R∗∗
− R∗∗

R
≤ 0, 3− R∗∗

R
− R∗∗i P

∗∗

R∗∗i P
− RR∗∗i P

R∗∗RiP ∗∗
≤ 0.

Therefore, V̇ < 0.
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3.2 Model with treatment

Antimalarial drugs taken prophylactically or during infection (blood schizonticide)

concentrate particularly in parasitized erythrocytes. The drug diffuse into parasite

hysosomel compartments and becomes protonated in the acidic environment within,

so it can not pass out through the membrane. It raises the pH of lysosome, inhibiting

the polymerase that converts toxic free haem to a harmless by-product. It prevents

digestion of haemoglobin by parasites, reducing its supply of amino acids and therefore

makes the parasite survival development difficult [18].

In this section we consider administering drugs that promote transmission blocking

by replacing the parasite transmission rate βa in model (3.1) by (1− ε)βa, where ε is

the drug efficacy, 0 ≤ ε ≤ 1, with ε = 0 meaning the drug is totally ineffective and

ε = 1, the drug is 100% effective [11]. The model (3.1) becomes:

Ṙ = πa − µrR− (1− ε)βaRP

Ṙi = (1− ε)βaRP − αRi

Ṗ = αrRi − µpP − (1− ε)βaRP

(3.12)

withe an associated reproduction number

Rε =
(1− ε)rβaπa

µrµp + (1− ε)βaπa
.

Note that if ε = 1, Rε = 0 meaning that the parasite clears in the host’s blood stream

and if ε = 0, Rε = R0.
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Critical Drug Efficacy

Solving for ε from the expression for Rε = 1 gives

ε∗ = 1− µrµp
(r − 1)βaπa

,

and for the parameter values given in Table 3.1, ε∗ = 0.9952.

Lemma 3.2.1 The treatment reproductive threshold Rε < 1 whenever ε > ε∗.

If the malarial drug efficacy is greater than ε∗, the parasite is cleared from the blood,

that is , Rε < 1. The results for ε > ε∗ are illustrated numerically below.

3.3 Numerical simulations

Using parameter values in Table 3.1, we have numerical simulations giving rise to

Figure 3.1 showing trajectories of the RBCs, IRBCs and parasite populations at any

time t > 0 for different initial conditions. Irrespective of where we start from, the

trajectories converge to the same values in the long-run, demonstrating stability of

the equilibrium points.

Figure 3.2 shows the concentration of IRBCs when the drug efficacy is less and greater

than the critical drug efficacy of 0.9532. For ε < ε∗, we have the parasite persistance

in the blood stream whereas ε > ε∗, the parasite will be cleared from the blood stream.

The figures below show the concentrations of RBCs, IRBCs and parasites at different

drug efficacy levels. Numerical simulations (see Figures 3.2 and 3.3) have shown that
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Table 3.1: Description of model parameters for system (3.1).

Parameter Definition Value Ref.

πa Prod. rate of RBCs from the bone-marrow (cell/mil.day) 2.5× 109 [11]

µr Natural death rate of uninfected RBCs (perday) 0.8 [18]

βa Rate of infection (ml/cell.day) 2× 10−11.3 [11]

α Bursting rate of IRBCs (perday) 0.5 [11]

µp Natural death rate of parasites (perday) 0.022 [11]

r Num. of merozoites released per bursting IRBC (perday) 16 [11]

as the drug efficacy level increases to ε = 0.954, with Rε = reaching 0.98, the parasite

will be wiped out completely from the blood stream though a question might still

remain on the practical attainability of such an efficacy level.
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Figure 3.1: Simulations of equation(3.1) showing the concentrations of (a) RBCs (b)

IRBCs, and (c) parasites at different initial conditions over time for R0 > 1 in the

absence of treatment. For parameter values used, see table 3.1

This model (3.12) does not present all manifestations of malaria. For example, White
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Figure 3.2: Simulations of equation (3.12) showing the concentration of IRBCs for

ε < ε∗ and ε > ε∗ using parameter values in table 3.1.
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Figure 3.3: Simulations of equation (3.12) showing the parasite concentration for

ε < ε∗ and ε > ε∗ using parameter values in table 3.1.
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[21] has reviewed a clinical study for patients infected with vivax malaria. This review

revealed various manifestations of malaria infections which can not be described by

a simple model of Anderson et al [10].



Chapter 4

Inhost transplacental malaria

transmission with and without

time delay

4.1 Introduction

Pregnant women experience an increased risk of Plasmodium falciparum infection

during pregnancy than non-pregnant women because of weakened immunity. This

increased risk contributes significantly to perinatal disease burden in terms of preg-

nancy loss, prematurity due to preterm labor, and intrauterine growth retardation

[27]. The direct burden of neonatal malaria infection in terms of prevalence is not

well-described in malaria endemic areas, and reported estimates vary widely from

0% to 33% [29]. Epidemiological studies estimate 125 million pregnancies are at risk

46
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of malaria infection every year within an estimate of 32 million women who become

pregnant every year in malaria endemic sub-Saharan Africa countries [1, 28]. Ac-

cording to the World Health Organization (WHO), malaria accounts for over 10, 000

maternal and 200,000 neonatal deaths per year [1].

Symptoms of malaria infection can appear in new born babies 24 hours after birth.

However, the disease may be seen in a day-old infant or appear after weeks to months

[26, 29]. Evidence of occurrence and characteristics of congenital malaria in endemic

areas is summarized by the following clinical case reports that will form the ba-

sis of our mathematical model: The first case report of congenital malaria is that

of a mother who delivered identical male twins through spontaneous delivery. The

mother and one of the twins tested positive for malaria parasites on the day of de-

livery. The second twin tested positive for malaria parasites on the second day after

delivery [60]. Even though the mother had taken all the recommended doses of sul-

fadoxine/pyrimethamine for intermittent preventive treatment for malaria, she still

developed the infection immediately after delivery. The infection remained active in

both the mother and the foetus even though it was not detected. The question is

whether the malaria parasites had developed resistance to the preventive drugs that

were administered or whether the drug concentration that diffused to the foetuses

was too weak to clear the infections. The second case report is that of a woman who

lived in Europe but visited a malaria endemic area for a short period in 2008 [59].

She returned to a malaria-free Europe and became pregnant one year after her short

visit to a malaria endemic area. She gave birth to a female infant. 22 days after birth
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the infant developed fever and a wrong clinical diagnosis of neonatal sepsis was made

and treatment with antibiotics was started. However, twenty-four hours after the in-

fants’s admission an accidental examination of the infant’s peripheral blood revealed

a diagnosis of vivax malaria. The mother’s history revealed that she had been treated

for malaria during her short visit to the malaria endemic area. The mother was then

re-evaluated in view of the infant’s diagnosis but tested negative for malaria parasite

[59]. The third case report is that of an infant who tested positive for plasmodium

vivax immediately after birth but the mother tested negative for malaria parasite.

Ou édraogo et al [24] have found evidence of infection with Plasmodium falciparum

in about 1.4% of new born babies in Burkina Faso. However, the majority of mothers

who tested positive for Plasmodium falciparum during pregnancy went on to deliver

normal healthy babies [24]. There is clear evidence [26] that the interaction between

HIV-1 and malaria in pregnancy causes more peripheral and placental parasitemia

and that placental HIV-1 is increased in women with placental malaria. The associ-

ation between the two infections can potentially have disasterous effects. Therefore,

any interaction between these infections will have a significant public health effect in

sub-Sahara Africa, even if the statistical effect is modest.

Based on these clinical case reports, we want to formulate a mathematical model that

mimics the four clinical case reports presented in [24, 59].

Malaria endemic areas with high HIV prevalence are susceptible to increasing congen-

ital malaria prevalence. This study aims to investigate vertically transmitted malaria

from the placenta of a pregnant mother to her foetus (congenital malaria). Some of
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the children who survive malaria infection are known to suffer long-term consequences

such as repeated episodes of the illness which affect their educational opportunities

and contribute to poor development[24, 44].

Alterations of maternal-fetal blood exchange is the source of congenital malaria. Dur-

ing the pregnant mother’s malaria infection, parasitized RBCs can accumulate in the

intervillous spaces of the placenta and infiltrate the placenta barrier to initiate malaria

infection in the foetus [25, 36]. New malaria infection or malaria relapse during preg-

nancy can pose substantial risks to the mother and foetus.

Treatment of uncomplicated malaria in pregnancy is a balance between potential

foetal adverse effects from drug toxicity and improved clinical status with clearance

of the parasite [30]. Although safe and effective in reducing mortality from severe

malaria in adults and children older than 2 years of age, data on the safety and

efficacy of intravenous artesunate in infants are limited, with scant data on its use

in neonates [1, 29]. While chemotherapy in pregnancy appears efficacious, a major

question remains-which drugs are safest for both the mother and foetus and in what

quantities?

Therefore, understanding how malaria specifically affects pregnant women and whether

the drug has a deleterious effect on the development of the embryo is crucial [25, 36].

Despite the public health hazard caused by placental malaria, few studies have also

addressed the impact of time delay on pregnancy outcome and the health of new born

babies in sub-saharan Africa.
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This chapter examines the vertical transmission mechanism of Plasmodium falci-

parum malaria and is structured as follows. Section 4.1 is the introdcution, Section

4.2 examines the inhost transplacental transmission model of malaria in pregnanct

mothers with and without time delay in the presence of intervention. Section 4.3

presents the mathematical and numerical analysis for the models without delay. Sec-

tion 4.4 presents the mathematical analyisis for the model with time delay.

4.2 Transplacental transmission model

We formulate a model that includes malaria infection of the primary host, the mother,

followed by malaria infection of the secondary host, the foetus, due to failure of the

mother’s immune system to detect and reject infected red blood cells crossing the

umbilical (transplacental) cord to enter the foetus blood system. We assume that the

infection in the mother is described by the Anderson et al (1989) [10] model given by:

R(t) = Πa − µrR(t)− βa(1− ε1)R(t)P (t) (4.1)

Ṙi(t) = βa(1− ε1)R(t)P (t)− (α + δ(u(tb − ta)))Ri(t) (4.2)

Ṗ (t) = αrRi(t)− µpP (t)− βa(1− ε1)R(t)P (t), (4.3)

where the parameter α in [10] is replaced by α+ δ(u(tb− ta)) where δ is the constant

transplacental transmission rate ,u(tb− ta) is the unit step function and ta ≤ t ≤ tb is

the assumed period of transfer of malaria infection from mother to foetus. The terms

in equations (4.1)-(4.3) have the same meaning as in Anderson et al [10] except for

the term δ(u(tb−ta))Ri which represents the infected red blood cells from the primary

host that avoid immune detection in the umbilical cord and enter the blood stream of
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the foetus. For the asexual stage in the foetus, we incorporate intracellular discrete

time delay between the infection of the mother and the initiation of the infection in

the foetus. The asexual stages within the foetus are described by the following system

of delay differential equations:

Ṙf (t) = Πf − µfRf (t)− βf (δ)(1− ε2)Rf (t)Pf (t− τ) (4.4)

Ṙif (t) = βf (δ)(1− ε2)Rf (t)Pf (t− τ)− αfRif (t) (4.5)

Ṗf (t) = αfrRif (t) + δ(u(tb − ta))rRi(t)− µpfPf (t− τ)− βf (δ)(1− ε2)Rf (t)Pf (t− τ)(4.6)

under the initial conditions

R(0) = R0, Ri(0) = Ri0, P (0) = P0, Rf (0) = Rf0

Rif (θ) = R0if , Pf (θ) = P0f , θ ∈ [−τ, 0].

The parameters in equations (4.4)-(4.6) have the following meaning: εi, i = 1, 2

denote drug efficacy in the mother (ε1) and foetus (ε2), Πf represents constant re-

plenishment rate in the foetus, µf is constant normal decay rate for healthy red blood

cells in the foetus, and βf (δ) is the infection coefficient in the foetus, which depends

on the transmission rate δ of infected red blood cells from mother to foetus, and

τ > 0 represents the length of the delay. We shall illustrate the problem of congenital

malaria infection with a very simple function β(δ)f given by:

βf (δ) =


0, if δ = 0

kδ, if δ 6= 0.

(4.7)

Normally, transmission of the infection from mother to the foetus is a random event

and should be represented by more realistic functions of the jump type. But our main
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interest is to demonstrate how this type of infection occurs and to make recommen-

dations on the levels of drug efficacy and drug permeability factor in the primary host

that would stop the infection transferring to the foetus.

The assumed infection dynamics within the foetus ((4.4)-(4.6)) are similar to those

in the host, except that there is intracellular time delay in the parasite dynamics.

4.3 Mathematical analysis for the model

4.3.1 Model without time delay, τ = 0

We consider a scenario where an expectant mother infected with malaria is treated

with a malaria drug of efficacy ε1, which passively diffuses to the foetus at a constant

efficacy ε2 = ηε1, where 0 < η < 1 is the transplacental drug permeability factor.

The assumption ε2 < ε1 is supported by a study [75] which has shown that for either

bolus administration of drug or continuous administration of drug peak maternal

concentrations of drug are higher than foetal peak concentrations except during the

drug elimination phase. In this study, we have assume that the chemo-dynamic effects

of the drug is constant in both the mother and the foetus. The model (4.8)-(4.13)

investigates possible efficacy levels of malarial drugs that must be administered to

the mother to ensure a parasite free state in the foetus.

First, we make an assumption that the malaria infection in the foetus begins at the

same time as the infection in the mother, that is, τ = 0. The model (4.1)-(4.6)
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becomes:

R = Πa − µrR− β̂aRP, (4.8)

Ṙi = β̂aRP − (α + δ̂)Ri, (4.9)

Ṗ = αrRi − µpP − β̂aRP, (4.10)

Ṙf = Πf − µfRf − β̂f (δ)RfPf , (4.11)

Ṙif = β̂f (δ)RfPf − αfRif , (4.12)

Ṗf = αfrRif + δ̂rRi − µpfPf − β̂f (δ)RfPf , (4.13)

where β̂a = (1− ε1)βa, β̂f = (1− ε2)βf and δ̂ = δu(tb − ta).

Positivity of solutions

We denote by R6
+ the set of points xt = (x1, · · · , x6) with positive coordinates and

consider the system (4.8)-(4.13) with initial values x0 = (x0
1, · · · , x0

6).

Using lemma (3.1.1) in Chapter 3, and for the state variables in our model, we take

R(0) ≥ 0, Ri(0) ≥ 0, P (0) ≥ 0

Rf (0) ≥ 0, Rif (θ) ≥ 0, Pf (θ) ≥ 0, θ ∈ [−τ, 0].

From Lemma (3.1.1) we conclude that

R(t) ≥ 0, Ri(t) ≥ 0, P (t) ≥ 0

Rf (t) ≥ 0, Rif (t) ≥ 0, Pf (t) ≥ 0.

Thus, the region defined by Ω = {(R,Ri, P, Rf , Rif , Pf ) ∈ <6
+} is immunologically

and mathematically well posed and we can use it to study congenital malaria infection.
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The model reproduction number

The reproduction number is obtained by the Watmough and Van Driesche [52] tech-

nique. We obtain two reproduction numbers one for the infection in the mother

(primary infection) and the other for the infection in the foetus (secondary infection)

given by

R0a =
rαΠaβa

(α + δu(tb − ta))(Πaβa + µpµr)
, R0f =

rΠfβf (δ)

Πfβf (δ) + µfµpf
,

R0at =
rαΠaβa(1− ε1)

(α + δu(tb − ta)) (Πaβa(1− ε1) + µpµr)

=
rαΠaβa

(α + δu(tb − ta))(Πaβa + µpµr)
(1− ε1)

(
1− Πaβaε1

Πaβa + µpµr

)−1

= R0a

(
1−

(
1− Πaβa

Πaβa + µpµr

)
ε1 +O(ε21)

)

< R0a,

R0ft =
rΠfβf (δ)(1− ε2)

(Πfβf (δ)(1− ε2) + µfµpf )

≤ R0f

(
1−

(
1− Πfβf (δ)

Πfβf (δ) + µfµpf

)
ε2 +O(ε22)

)

< R0f ,

where R0a and Rof are the pre-treatment reproduction numbers in the mother and

foetus, respectively. R0at and R0ft are the reproduction numbers when treatment is

administered.
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4.4 Steady states

The model (4.8)-(4.13) has two steady states, the infection-free, x0, and an infected

steady state, x, given by

x0 =

(
Πa

µr
, 0, 0,

Πf

µf
, 0, 0

)
(4.14)

and

x = (R∗∗, R∗∗i , P
∗∗, R∗∗f , R

∗∗
if , P

∗∗
f ), (4.15)

where

R∗∗ =
µp(α + δ̂)

β̂a(α(r − 1)− δ̂)
, R∗∗i =

αrβ̂aΠa(R0at − 1)

(α + δ̂)(α(r − 1)− δδ)R0at

P ∗∗ =
αrβ̂aΠa(R0at − 1)

(α + δ̂)µpR0at

, R∗∗f =
Πf − αfR∗∗if

µf
, P ∗∗f =

αfR
∗∗
if

β̂fR∗∗f
.

R∗∗if is the positive root of the quadratic equation

AR∗∗2if +BR∗∗if + C = 0 (4.16)

where

A = β̂fα
2
f (r − 1) > 0,

B = αf (µpfµf + Πf β̂f )(1−R0ft) + αf δ̂rβ̂fR
∗∗
i

C = − δ̂αr
2β̂fΠf β̂aΠa(R0at − 1)

(α + δ̂)(α(r − 1)− δ̂)R0at

< 0.

We shall show below that the steady state (4.15) can either be one where the host is

actively infected but the foetus is latently infected or one where both host and foetus
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are actively infected or one where the infection clears in the mother but remains in

the foetus. We describe these infections in the foetus in the following cases:

Case 1:

(
R∗∗f , R

∗∗
if , P

∗∗
f

)
=

(
Πf − αfRif

µf
,
−B +

√
B2 − 4AC

2A
,
αfRif

β̂fRf

)
. (4.17)

when R0at > 1 and R0ft < 1.

In this case, the infection remains latent in the foetus. Eventually, this infection will

clear as the mechanism that maintained it ended at birth.

Case 2: Malaria infections in newly born babies have been reported [33]. The

cause of these infections has been a subject of contention [26]. Some studies have

reported these as new infections. This study is presenting a model that assumes

that such infections result from congenital infections. To illustrate this, we consider

the case when the number of infected red blood cells breaching the placental barrier

successfully replicate and initiate the erythrocytic cycle in the foetus. We obtain the

following infected steady state for the foetus:

(
R∗∗f , R

∗∗
if , P

∗∗
f

)
=

(
Πf − αfRif

µf
,
−B +

√
B2 − 4AC

2A
,
αfRif

β̂fRf

)
. (4.18)

when R0at > 1 and R0ft > 1.

Note that treatment with a perfect drug reduces both foetal infected steady states

(4.17) and (4.18) to a parasite-free state.

Case 3:

(
R∗∗f , R

∗∗
if , P

∗∗
f

)
=

(
Πf − αfRif

µf
,
−B ±

√
B2 − 4AC

2A
,
αfRif

β̂fRf

)
. (4.19)
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when R0at < 1 and R0ft > 1.

In this case the infection clears in the mother but remains active in the foetus [24].

Note that A,B and C used in cases 1, 2 and 3 are the coefficients of (4.16).

4.4.1 Parasite-free steady state

We begin by proving the stability of the parasite-free steady state:

Theorem 4.4.1 The parasite-free equilibrium state is locally stable if R0ft < 1 and

R0at < 1.

We have shown in Appendix that all the eigenvalues of (4.8)-(4.13) have negative real

parts if R0ft < 1 and R0at < 1.

Theorem 4.4.2 The parasite-free steady state (4.14) is globally asymptotically stable

if R0at < 1. and R0ft < 1.

Proof We define the Lyapunov function V in terms of the infected states only as

follows:

V = aRi +
1

r
P + bRif +

1

r
Pf ,

where a and b are constants to be determined. Differentiating gives

V̇ = aṘi +
1

r
Ṗ + bṘif +

1

r
Ṗf
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= aβaRP − a(α + δ̂)Ri + αRi −
µp
r
P − 1

r
β̂aRP

+ bβ̂fRfPf − bαfRif + αfRif + δ̂Ri −
µpf
r
Pf −

1

r
βfRfPf . (4.20)

Letting linear terms in Ri and Rif go to zero gives a = 1, b = 1. Hence, we have

V̇ = βaRP −
µp
r
P − 1

r
βaRP

+ βfRfPf −
µpf
r
Pf −

1

r
βfRfPf

=

[
βaR−

(
µp
r

+
βa
r
R

)]
P +

[
βfRf − (

µpf
r

+
βf
r
Rf )

]
Pf

≤
[
βaR

∗ −
(
µp
r

+
βa
r
R∗
)]

P +

[
βfR

∗
f − (

µpf
r

+
βf
r
R∗f )

]
Pf

= −(µpµr + βaΠa)

rµr
(1−R0at)P −

µpfµf + βfΠf

rµf
(1−R0ft)Pf

< 0 if and only if R0at < 1andR0ft < 1.

4.4.2 The infested steady states

The system (4.8)-(4.13) possesses three infected steady states. There are three possi-

ble scenarios. First, we consider a steady state where the erythrocytic infection in the

host is active but latent in the foetus (xl) , secondly, a state where the erythrocytic

infections are active in both the mother and the foetus (xe) and thirdly, a state where

the erythrocytic infections are clear in the mother but remain active in the foetus

(xT ) . From (4.8)-(4.13), xl and xe are given by:
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For latency in the foetus, we obtain:

xl =

(
R∗∗, R∗∗i , P

∗∗,
Πf − αfRif

µf
,
−B +

√
B2 − 4AC

2A
,
αfRif

β̂fRf

)
,

when R0at > 1 and R0ft < 1.

For active infection in both host and foetus, we have:

xe =
(
R∗∗, R∗∗i , P

∗∗, R∗∗f , R
∗∗
if , P

∗∗
f

)
where

R∗∗ =
µp(α + δ)

β̂a(α(r − 1)− δ)
, R∗∗i =

αrβ̂aΠa(R0at − 1)

(α + δ)(α(r − 1)− δ)R0at

,

P ∗∗ =
αrβ̂aΠa(R0at − 1)

(α + δ)µpR0at

, R∗∗f =
Πf − αfRif

µf
,

R∗∗if =
−B +

√
B2 − 4AC

2A
, P ∗∗f =

αfRif

β̂fRf

with R0at > 1 and R0ft > 1, and for the erythrocytic infections under control in the

mother but active in the foetus we have:

xT =
(
R∗∗, R∗∗i , P

∗∗, R∗∗f , R
∗∗
if , P

∗∗
f

)
where

R∗∗ =
µp(α + δ)

β̂a(α(r − 1)− δ)
, R∗∗i =

αrβ̂aΠa(R0at − 1)

(α + δ)(α(r − 1)− δ)R0at

,

P ∗∗ =
αrβ̂aΠa(R0at − 1)

(α + δ)µpR0at
, R∗∗f =

Πf − αfRif

µf
,

R∗∗if =
−B ±

√
B2 − 4AC

2A
, P ∗∗f =

αfRif

β̂fRf

when R0at < 1 and R0ft > 1.
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In general, the Jacobian matrix of the system (4.8)-(4.13) at an infected steady state x

is given by: Jx =



−µr − β̂aP ∗∗ 0 −β̂aR∗∗ 0 0 0

β̂aP
∗∗ −(α + δ̂) β̂aR

∗∗ 0 0 0

−β̂aP ∗∗ αr −(µp + β̂aR
∗∗) 0 0 0

0 0 0 −(µf + β̂fPf ) 0 −β̂f (δ)Rf

0 0 0 β̂fPf −αf β̂f (δ)Rf

0 δ̂r 0 0 αfr −(µpf + β̂fRf )


.

Solving |Jx − λI| = 0 yields two distinct characteristic equations given by:

For the host:

λ3 + A2λ
2 + A1λ+ A0 = 0, (4.21)

and for the foetus:

λ3 + (a11 + a33)λ2 + (a22 + a44)λ+ a55 = 0, (4.22)

where
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A2 = α + δ̂ + µp + µr + β̂a(R
∗∗ + P ∗∗),

= (α + δ) + µp + µr +
αrµp

(α(r − 1)− δ)
+

rαβ̂a
∏

a

(α + δ)µpR2
0at

(R0at − 1)

> 0 for R0at > 1.

A1 = (α + δ)(µr + µp) + µrµp + (µr + δ)β̂aR
∗∗ + (α + δ + µp)β̂aP

∗∗ − α(r − 1)β̂aR
∗∗

= µrµp

(
αr

α(r − 1)− δ̂

)
+ (α + δ̂)µr + (µp + α + δ̂)β̂aP

∗∗

> 0 for R0at > 1.

A0 = (α + δ)µrµp + δµrβ̂aR
∗∗ + (α + δ)µpβ̂aP

∗∗ − α(r − 1)µrβ̂aR
∗∗ + (α + δ)β2

aR
∗∗P ∗∗

= (α + δ)µp

(
αr

α(r − 1)− δ

)
P ∗∗ > 0 for R0at > 1.

A1A2 =

(
(α + δ)µp

(
αr

α(r − 1)− δ

)
P ∗∗ + positive terms

)
> (α + δ)µp

(
αr

α(r − 1)− δ

)
P ∗∗ = A0.

Remark 4.4.1 The parasite-present steady state is stable in the host for R0at > 1.

Next, we investigate the nature of stability in the foetus under the scenarios (4.17),

(4.18) and (4.19) above.

The coefficients in the equation (4.22) for any infected steady state x are given by:

a11 = αf + µf + β̂fP
∗∗
f ,

a22 = αf (µf + β̂fP
∗∗
f ),

a33 = µpf + β̂fR
∗∗
f ,
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a44 = αfµpf + µpfµf + µpf β̂fP
∗∗
f + β̂2

fR
∗∗
f P

∗∗
f − αf (r − 1)βfR

∗∗
f ,

a55 = αfµfµpf − µfαf (r − 1)β̂fR
∗∗
f + αfµpf β̂fP

∗∗
f + αf β̂

2
fR
∗∗
f P

∗∗
f . (4.23)

At xl, the coefficients (4.23) become:

a55 = αfµfµpf + µf (αf + rαf )β̂fR
∗∗
f > 0

a11 + a33 = αf + µf + µpf + β̂fR
∗∗
f > 0

a22 + a44 = αfµf + αfµpf + µpf + µf (αf + µfrαf )β̂fR
∗∗
f > 0

(a11 + a33)(a22 + a44) =
(
αfµfµpf + µf (αf + rαf )β̂fR

∗∗
f + Positive terms

)
>

(
αfµfµpf + µf (αf + rαf )β̂fR

∗∗
f

)
= a55.

By the Routh-Hurwitz stability criterion, we conclude that the latently infected steady

state xl is stable if R0at > 1, that is, whenever the steady state in the host is stable.

Similarly, at xe, the coefficients (4.23) become:

a11 + a33 = αf + µf + µpf + β̂fP
∗∗
f + β̂fRf > 0

a22 + a44 = αf

(
µf + β̂fP

∗∗
f

)
+ µpf (αf + µf ) + µpf β̂fP

∗∗
f

+ (αf + µf + rαf )β̂fR
∗∗
f > 0

a55 = αfµfµpf + µf (αf + rαf )β̂fR
∗∗
f + αfµpf β̂fP

∗∗
f > 0

(a11 + a33)(a22 + a44) =
(
αfµfµpf + µf (αf + rαf )β̂fR

∗∗
f + αfµpf β̂fP

∗∗
f + Positive terms

)
= a55 + Positive terms > a55.
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By the Routh-Hurwitz stability criterion, the solutions of (4.22) have negative real

parts. Hence, the steady state xe is stable for R0at > 1 and R0ft > 1.

Remark 4.4.2 For a mother infected with the malaria parasite, either the foetus is

latently infected or it is actively infected. For a latently infected foetus the disease

prognosis is good as the infection clears after the baby is born. An actively infected

foetus may progress to clinical malaria shortly after birth.

Table 4.1: Description of model parameters for system (4.1-4.6)

Parameter Definition (Note: *est. means estimate.) Value Ref.

πa Prod. rate of RBCs from bone-marrow of mother (cell/mil.day) 2.5× 109 [11]

πf Prod. rate of RBCs from bone-marrow of the foetus (cell/mil.day) 2.5× 109 est.

µr Nat. death rate of mother’s RBCs (perday) 0.8 [18]

βa Rate of infection (ml/cell.day) in mother 2× 10−11.3 [11]

α Bursting rate of mother’s IRBCs (perday) 0.5 [11]

αf Bursting rate of foetus’s IRBCs (perday) 0.5 est.

µp Nat. death rate of parasites (perday) in mother 0.022.0 [11]

µpf Nat. death rate of parasites (perday) in foetus 0.022 est.

r Num. of meroz. released per bursting IRBC (perday) 16 [11]

δ transplacental transmission rate 1 est.

k constant 2× 10−11.3 est.
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4.4.3 Numerical Simulation: τ = 0

Synchronicity of parasite spread and control, in both the mother and foetus, are nu-

merically analyzed. Figures 4.1, 4.2 and 4.3 shows the RBCs, IRBCs and parasite

synchrony, respectively, in the mother and foetus (a case where ε1 = ε2 = 0) for

different initialconditions. RBCs densities in both the mother and foetus are de-

creasing over time as the parasite load increases, cases that results in fever, and in

severe cases , anemia in the mother, and reduced growth or even foetal death in the

womb. These figures also demonstrates the asymptotic stability of the pre-treatment

parasite-present equilibrium of model (4.8)-(4.13) under various initial conditions.

Figure 4.4 demonstrates the benefit on the foetus parasite load by administering an-

timalarial treatment on the mother. The simulations shows that by administering

an antimalarial drug with a drug efficacy level between 0.982 and 0.983, exclusively,

can eradicate completely, the malaria parasite in both the mother and foetus at a

gestation period that allows the minimum placental permiability of at least η = 0.97

(see Table 4.2 ).

Table 4.2: Table showing the values of R0at and R0ft for different drug efficacy levels

and for different drug permiability factor (η) for model (4.8)-(4.13)

(ε1) η = 0.6 η = 0.8 η = 0.97

0 (R0at, R0ft) = (3.13, 9.39) (3.13,9.39) (3.13,9.40)

0.95 (R0at, R0ft) = (0.35, 6.07) (0.35,4.07) (0.35,1.61)

0.983 (R0at, R0ft) = (0.13, 5.89) (0.13,3.73) (0.13,0.99)

Because the thickness of the placental barrier differs at different stages of gestation in
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humans, where after 16 weeks of gestation, there is a reduction in the thickness of the

barrier because of the partial disappearance of the cytotrophoblast layer which results

in higher permeability in the term placenta compared with preterm placenta [78, 79],

we give results of R0at and R0ft for drug efficacy levels ε1 = 0, 0.95 and ε1 = 0.983,

under different possible placental drug transfer permeability factor η (see Table 4.2).

From table (4.2), we see that giving antimalarial drugs to a pregnant mother with a

drug efficacy of about 0.95 at any stage in pregnancy, though it will help in reducing

the foetal parasite load, it might not possibly help in eradicating the malaria parasite

in the mother, and hence, a foetal re-infection might, as well, occur later.

From Table (4.2), administering a drug with efficacy level 0.982 < ε1 < 0.983 will

help wipe-out the malaria parasite in both the mother and foetus at a gestation stage

of least η = 0.97.

Note that if the drug concentration transmitted to the foetus is reduced significantly,

the foetus could be born with the malaria infection which could manifest itself within

the first few weeks after birth. On the other hand, if the drug concentration is too

strong it could lead to pregnancy complications and possibly to abortion.

For δ 6= 0, this model assumes that the infected red blood cells are always transmitted

to the foetus which is not always true. A stochastic approach would be preffered when

the transmission from mother to child is stochastic.
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Figure 4.1: Trajectories of model (4.8)-(4.13) showing synchrony of the RBCs dy-

namics in the mother and foetus, in the absence of intervention under different initial

conditions.
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Figure 4.2: Trajectories of model (4.8)-(4.13) showing synchrony of the IRBCs dy-

namics in the mother and foetus, in the absence of intervention under different initial

conditions
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Figure 4.3: Trajectories of model (4.8)-(4.13) showing synchrony of the RBCs dy-

namics in the mother and foetus, in the absence of intervention under different initial

conditions.
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Figure 4.4: Simulations of equations (4.8) and (4.13) showing the IRBCs densities for

(a) the mother and (b) foetus for different drug efficacy levels. For parameter values

used, see table (4.1), with η = 0.97.
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4.5 Model with time delay, τ 6= 0

To study the stability of the steady states x, we define

x1(t) = R(t)−R∗∗, x2(t) = Ri(t)−R∗∗i , x3(t) = P (t)− P ∗∗, x4(t) = Rf (t)−R∗∗f ,

x5(t) = Rif (t)−R∗∗if , x6(t) = Pf (t)− P ∗∗f .

Then the linearized system of (4.1)-(4.6) at x is given by

dx1(t)

dt
= −µrx1(t)− β̂aP ∗∗x1(t)− β̂aR∗∗x3(t) (4.24)

dx2(t)

dt
= β̂aP

∗∗x1(t) + β̂aR
∗∗x3(t)− (α + δ)x2(t) (4.25)

dx3(t)

dt
= αrx2(t)− µpx3(t)− β̂aP ∗∗x1(t)− β̂aR∗∗x3(t) (4.26)

dx4(t)

dt
= −µfx4(t)− β̂f (δ)P ∗∗f x4(t)− β̂f (δ)R∗∗f x6(t− τ) (4.27)

dx5(t)

dt
= β̂f (δ)P

∗∗
f x4(t) + β̂f (δ)R

∗∗
f x6(t− τ) + δx2(t)− αfx5(t) (4.28)

dx6(t)

dt
= αfrx5(t) + δrx2(t)− µpfx6(t− τ)− β̂fP ∗∗f x4(t)− β̂f (δ)R∗∗f x6(t− τ)..(4.29)

We then write system 4.24-4.29 in matrix form as follows:

d

dt



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)


= A1



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)


+ A2



x1(t− τ)

x2(t− τ)

x3(t− τ)

x4(t− τ)

x5(t− τ)

x6(t− τ)


where
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A1 =



−µr − βaP ∗∗ 0 −βaR∗∗ 0 0 0

βaP
∗∗ −(α + δ) βaR

∗∗ 0 0 0

−βaP ∗∗ αr −µp − βaR∗∗ 0 0 0

0 0 0 −µf − βf (δ)P ∗∗f 0 0

0 δ 0 βf (δ)P
∗∗
f −αf 0

0 δr 0 −βf (δ)P ∗∗f αfr 0


and

A2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −βf (δ)R∗∗f

0 0 0 0 0 βf (δ)R
∗∗
f

0 0 0 0 0 −µpf − βf (δ)R∗∗f


.

The characteristic equation of system (4.24)-(4.29) is given by

|λI − A1 − A2e
−λτ | = 0,

that is, two characteristic equations of order three

λ3 + a2λ
2 + a1λ+ a0 = 0, (4.30)

and

f(λ) + g(λ)e−λτ = 0, (4.31)

with

a2 = α + δ + µp + β̂aR
∗∗ + µr + β̂aP

∗∗ > 0
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a1 = (α + δ)µr + (α + δ)β̂aP
∗∗ + µrµp + µrβ̂aR

∗∗ + µpβ̂aP
∗∗

−β̂aR∗∗(αfr−(α+δ))+(α+δ)µp, a0 = (µr+β̂aP
∗∗)[µp(α+δ)−β̂aR∗∗(αfr−(α+δ))]+

β̂aP
∗∗β̂aR

∗∗(αr − (α + δ)), and :

f(λ) = λ3 + a11λ
2 + a22λ, (4.32)

g(λ) = a33λ
2 + a44λ+ a55, (4.33)

where

a11 = (µf + β̂fP
∗∗
f + αf ), a22 = αf (µf + β̂fP

∗∗
f ), a33 = (µpf + β̂fR

∗∗
f ),

a44 = [µfµpf + µf β̂fR
∗∗
f + µpf β̂fP

∗∗
f + αfµpf − αf (r − 1)β̂fR

∗∗
f ],

a55 = αfµpf (µf + β̂fR
∗∗
f )− µfαf (r − 1)β̂fR

∗∗
f + αfβ

2
fR
∗∗
f P

∗∗
f .

Let λ = iω and substitute it into (4.31). On separating the real and imaginary parts

gives:

ω3 + a22ω = (a55 − a33ω
2) sin(ωτ)− a44ω cos(ωτ), (4.34)

a11ω
2 = (a55 − a33ω

3) cos(ωτ) + a44ω sin(ωτ). (4.35)

Squaring on both sides of 4.34 and 4.35 and adding yield

ω6 + (a2
11 − 2a22 − a2

33)ω4 + (a2
22 − a2

44 + 2a33a55)ω2 − a2
55 = 0. (4.36)

Letting x = ω2, α = a2
11 − 2a22 − a2

33, β = a2
22 − a2

44 + 2a33a55, γ = a2
55,

equation (4.36) reduces to

G(x) = x3 + αx2 + βx− γ = 0. (4.37)
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For the parameter values given in Table 4.1 with ε1 = 0, α = 292.18, β = 72.83 and

γ = 0.034 and since γ > 0, then G(0) = −γ < 0 and limx→∞G(x) = ∞, implying

that (4.37) has at least one positive root, say x0. Consequently, (4.36) has at least

one positive root, denoted by ω0 and it follows that (4.36) and hence (4.37) has a

positive root ω0 implying that (4.31) has a pair of purely imaginary roots ±iω0.

Let λ(τ) = η(τ) + iω(τ) be the eigenvalue of (4.31) such that η(τ0) = 0, ω(τ0) = ω0.

From (4.34) and (4.35),

τj =
1

ω0

arccos[
a11ω

2
0(a55 − a33ω

2
0)− a44ω0(a22ω0 − ω3

0)

(a55 − a33ω2
0)2 + a2

44ω
2
0

] +
2πj

ω0

, j = 0, 1, 2, ...

and τ0 = min {τj, j = 0, 1, 2, ...} .

Theorem 4.5.1 G
′
(ω2

0) and Re[dλ
dτ

]−1
τ=τ0

have the same sign.

Proof Calculating the derivative of (4.31) with (4.32) and (4.33) with respect to τ,

we get

dλ

dτ
(f
′
(λ) + g

′
(λ)e−λτ − g(λ)e−λττ) = g(λ)e−λτλ.

[
dλ

dτ
]−1
τ=τ0

=
f
′
(λ) + g

′
(λ)e−λτ

λg(λ)e−λτ
− τ

λ

=
f
′
(iω0) + g

′
(iω0)e−iω0τ

iω0g(iω0)e−iω0τ
− τ

iω0

.

Therefore,

Re[
dλ

dτ
]−1
τ=τ0

= Re[
f
′
(iω0) + g

′
(iω0)e−iω0τ

iω0g(iω0)e−iω0τ
]

Using 4.31,
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Re[
dλ

dτ
]−1
τ=τ0

= Re[
f
′
(iω0)

iω0(−f(iω0))
+

g
′
(iω0)

iω0g(iω0)
]

= Re[
1

iω0

{
f
′
(iω0)

iω0(−f(iω0))
+

g
′
(iω0)

iω0g(iω0)

}
]

= Re[
1

iω0

{
−f ′(iω0)f̄(iω0)

f(iω0)f̄(iω0)
+
g
′
(iω0)ḡ(iω0)

g(iω0)ḡ(iω0)

}
]

= Re[
1

iω0

{
−f ′(iω0)f̄(iω0) + g

′
(iω0)ḡ(iω0)

|f(iω0)|2

}
].

The

sign(Re[
dλ

dτ
]−1
τ=τ0

) = sign(Im(−f ′(iω0)f̄(iω0) + g
′
(iω0)ḡ(iω0))).

With some calculations,

Im(−f ′(iω0)f̄(iω0) + g
′
(iω0)ḡ(iω0))

= 3ω5
0 + 2(a2

11 − 2a22 − a2
33)ω3

0 + (a2
22 − a2

44 + 2a33a55)ω0.

Therefore,

d

dτ
Re(λ(iω0)) =

d

dτ
η(τ)|τ=τ0 > 0.

By continuity, the real part of λ(τ) becomes positive when τ > τ0 and the steady state

x becomes unstable. Moreover, a Hopf bifurcation occurs when τ passes through the

critical value τ0 [80].

This analysis can be summerized in a theorem as follows.

Theorem 4.5.2 Since

A2 > 0, A1 > 0, A0 > 0, A1A2 > A0,

a11 + a33 > 0, a22 + a44 > 0, a55 > 0, (a11 + a33)(a22 + a44) > a55
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for the characteristic equations (4.21)-(4.22) then the parasite-infested state xe of the

delay model (4.1)-(4.6), is locally asymptotically stable when τ < τ0 and unstable

when τ > τ0, where

τ0 =
1

ω0

arccos[
a11ω

2
0(a55 − a33ω

2
0)− a44ω0(a22ω0 − ω3

0)

(a55 − a33ω2
0)2 + a2

44ω
2
0

].

When τ = τ0, we expect a Hopf birfucation to occur, that is, we expect a family

of periodic solutions to birfucate from xe as τ passes through the critical value τ0.

However, for the parameter values given in table with drug efficacy ε1 = 0.983, model

(4.1)-(4.6) does not seem to exhibit such birfucations.

4.5.1 Numerical Results: τ 6= 0

We conduct numerical simulations to show the effect of intracellular delay on the

qualitative behaviour of the pre-treatment foetal RBCs (see Figure 4.5), and the

foetal RBCs in the presence of treatment (see Figure 4.6)
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Figure 4.5: Trajectories of model (4.1)-(4.6) showing the effects of time delay on the

foetal IRBCs in the presence of treatment (ε1 = 0.983).
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Figure 4.6: Trajectories of model (4.1)-(4.6) showing the effects of time delay on the

foetal parasite population in the presence of treatment (ε1 = 0.983).



Chapter 5

A stochastic model for in-host

malaria parasite infection of red

blood cells

5.1 Introduction

Malaria is a disease caused when plasmodium parasites, injected into the human host

by an anopheles mosquito during a blood meal, start a vicious cycle of destroying the

host’s red blood cells. About 40% of the world population lives in malaria endemic

areas. Malaria has become one of the major killers of people living with AIDS.

Of the four known species of plasmodium that can infect and be transmitted by hu-

mans, plasmodium falciparum and plasmodium vivax are responsible for the majority

of infections and deaths in sub-Sahara Africa [71], while plasmodium ovale and plas-

75
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modium malariae are known generally to cause a milder form of malaria that is rarely

fatal. These four species of plasmodium exhibit different patterns of disease devel-

opment. For example, P.vivax and P.ovale infections are characterized by a cyclical

occurrence of fever every two days while P.malariae and P.falciparum fevers may

occur every three days for P.malariae and 36-48 hours, or a less pronounced and

almost continuous fever, for P.falciparum [61].

The four plasmodium species are also known to possess different recovery character-

istics [21]. P.vivax infections, for example, are characterized by relapses of malaria

arising from persistent liver stages of the parasite [21]. Even this species may exhibit

different characteristics depending on geographical location. A review by White [21]

quantifies the relapse period for tropical P.vivax to be three-week intervals if the

infection is treated using fast acting anti-malaria drugs, whereas in temperate regions

and parts of the sub-tropics, P.vivax infections exhibit longer latency periods be-

tween illness and relapse. Relapse may also occur in P.ovale [21] but it rarely occurs

in P.malariae and P.falciparum infections [8]. In sub-Sahara Africa most infected

individuals are co-infected with P.vivax and P.falciparum [21]. Because P.vivax has

the tendency to relapse after the primary infection, it has become difficult to deter-

mine whether a patient has a new P.falciparum infection or a relapse of a previous

P.vivax infection. This makes it harder to decide whether to treat the patient with

the same regimen if it is a new infection or a new regimen if the infection is a relapse.

For this reason, it is important to understand infection characteristics of the plas-

modium malaria parasites. Because the malaria parasite has two of its life stages
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within the human host, the liver and the red blood stages, understanding the par-

asite characteristics within each stage can provide insights into treatment strategies

and, in particular, to decide whether one drug for both stages should be continued as

a treatment strategy.

Several studies [8, 23, 67], describing human malaria pathogenesis, have demonstrated

various aspects of parasite infection characteristics. In some of these and other stud-

ies [3, 8], malaria is characterized by shortened life expectancy of the red blood cells

from 120 days when they are removed naturally by phagocytosis to about 2 days when

they are infected with plasmodium parasites. A study by McQueen and McKenzie

[8] has concluded that some plasmodium species that infect humans are restricted to

infecting particular age classes of red blood cells and that this strategy has a profound

effect on the course of the infection.

We reproduce the basic model of in-host malaria proposed by Anderson et al pre-

sented in Chapter 3

Ṙ = Λ− µrR− βRPe,

Ṙi = βRPe − µiRi, (5.1)

Ṗe = rµiRi − µpePe − βRPe,
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where R represents susceptible red blood cells, Ri represents infected red blood cells

(IRBC), and Pe are extracellular parasites, with model parameters defined as follows:

Λ : Constant source of red blood cells (cell/ml.day)

µr : Natural death rate of red blood cells (day−1)

β : Infection rate (ml/cell.day)

µi : Death rate of infected red blood cells (day−1)

r : Number of parasites released (8− 32percell)

µpe Natural death rate of extracellular parasites (day−1).

This model was the starting point of various studies [3, 8, 11, 23, 67] in their investi-

gation of various parasite characteristics. These studies have shown that the disease

always posses a parasite-free equilibrium, E0, which is stable if R0 < 1. If R0 > 1, then

E0 becomes unstable and progresses into an endemic equilibrium or parasite-present

state, E1, whose stability conditions have been derived in various studies [3, 11, 23].

However, in reality, the immunologic system of any individual is affected by immuno-

logical noises which we define as the state of the host prior to infection with the

malaria parasite. This ’noise’ is particularly present when the individual has been

already infected with other diseases, such as schistosomiasis or sickle-cell. Globally,

over one billion humans are at risk of contracting schistosomiasis (Bilharzia), a dis-

ease caused by parasitic worms. Approximately 80% of the 200 million individuals

infected with schistosomiasis live in sub-Sahara Africa. Schistosome worms reside in
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the mesenteric veins where they feed on red blood cells. If not treated, this condition

can cause anemia, decreased resistance to other diseases and liver damage resulting in

liver malfunction [69]. In sub-Sahara Africa, the annual mortality from this infection

is estimated to be 280, 000. Sickle-cell is another common disease throughout much of

sub-Sahara Africa. Sickle-cells are deformed red blood cells with decreased flexibility,

a condition which causes them to break down as they pass through capillaries and

veins. This disease affects up to 3% of newly born and affects approximately 275, 000

individuals in sub-Sahara Africa each year. The disease causes anaemia and if left

untreated can be fatal. Clinically, a significant number of individuals in sub-Sahara

Africa are co-infected with malaria, schistosomiasis and sickle-cell [21]. In such in-

dividuals, malaria is more severe as anaemia sets in faster. Moreover, decreased

resistance to other diseases in such patients complicates the treatment of malaria

[69].

Hence, although the deterministic approach (model (5.1)), describes the basic trans-

mission behavior of infectious in-host malaria disease, it cannot accurately represent

the various species of Plasmodium because such models do not incorporate the effects

of a fluctuating environment within the host. The parameters, Λ, β, µr, µi, µpe, ex-

hibit continuous oscillations around some average value (the deterministic value) but

do not attain fixed values. For this reason, some authors [58, 64, 65] have studied

epidemic dynamics with parameter perturbations. In this Chapter, we use a stochas-

tic approach to study the dynamics of in-host malaria when the model parameters

are oscillating due to a changing environment within the host. We show that this

approach better describes various plasmodium infection characteristics than the de-
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terministic approach.

The structure of this chapter is as follows:

In section 5.2 we consider a stochastic extension of the malaria model (5.1) with linear

diffusion diffusion matrix (see (5.3) with (5.4)-(5.5)) and in Section 5.4 we consider

the same model but with constant diffusion matrix. Existence and uniqueness are

proved in Section 5.3, but our main interest is to study the dynamic behavior of the

solution near stable points of the deterministic system (5.1).

In Section 5.4 we consider a general stochastic system with constant diffusion matrix

and an asymptotically stable state ys of the corresponding deterministic system. We

then estimate the degree to which the stability of ys is ”degraded” by the constant

diffusion matrix of the stochastic system. This result applies directly to the malaria

model of Section 5.4.

The situation is quite different for the malaria model of Section 5.2 with linear diffu-

sion matrix. After making a change of variables which transforms the system into a

stochastic system with constant diffusion matrix, we find that the only steady state

is the parasite-present state, which turns out to be unstable. Thus, a linear diffusion

matrix introduces a much higher instability into the original deterministic system

than a constant diffusion matrix. This phenomena probably applies to many other

disease models.

In the last section we explain how our two stochastic models exhibit a wide range of

infectivity characteristics extracted from patient data. We then summarize the novel
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approach of this chapter in the context of personalized medicine.

5.2 Malaria in-host stochastic model

We first revise model (5.1) by replacing µi in the model (5.1) by µi + γ where γ

represents the rate at which parasites are released from rupturing infected red blood

cells and µi represents the rate at which latently infected red blood cells die naturally.

Next, we introduce randomness in the revised model by replacing the parameters

µr, µi, and µpe by µr → µ1 + σ1Ḃ1, µi → µ2 + σ2Ḃ2, and µpe → µ3 + σ3Ḃ3, where

the µj’s are positive constants and Bj = Bt,j(j = 1, 2, 3) are independent standard

Brownian motions with initial position B0,j(0) = 0, and variance 1 and the σj are

non-zero parameters. The stochastic system is given by:

dR = (Λ− µ1R− βRPe) dt− σ1RdBt,1,

dRi = (βRPe − (µ2 + γ)Ri) dt− σ2RidBt,2, (5.2)

dPe = (rγRi − µ3Pe − βRPe) dt− σ3PedBt,3.

For simplicity of notation, we set xt = (x1(t), x2(t), x3(t)) = (R(t), Ri(t), Pe(t)), and

write the system (5.2) in matrix form

dxt = f (xt) dt+ σ(xt)dBt, (5.3)
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where

f (xt) =


Λ− µ1x1 − βx1x3

βx1x3 − (µ2 + γ)x2

rγx2 − µ3x3 − βx1x3

 , (5.4)

σ(xt) =


σ1x1 0 0

0 σ2x2 0

0 0 σ3x3

 , (5.5)

and dBt is the vector column of the Bt,j.

Remark 5.2.1 Note that by choosing the parameter of the death rate of red blood

cells to be µ1 +σ1Ḃ1, we allow it to take negative values since Brownian motion takes

arbitrarily large negative and positive values in any small time interval. However,

the probability that this random death rate becomes negative is negligible if σ1 is

small compared to µ1. Thus, in the sense of probability, we can accept the death rate

µ1 + σ1Ḃ1 as a small random perturbation about µ1. The same remark applies to

the death rates of Ri and Pe. However, we shall need to prove that the solutions of

the model (5.3) with positive initial components will have positive components for all

t > 0. Later on, we shall consider the stability of the steady states xs of the system

(5.3). We shall then adopt the same probabilistic point of view, namely, instead of

considering individual paths of xt−xs, we shall evaluate the expectation of | xt−xs |2 .

Remark 5.2.2 In Section 5.3, we shall prove that the system (5.3) with drift and

diffusion matrices given by (5.4) and (5.5), respectively, has a unique solution with

positive components for any initial state with positive components. In Section 5.4,
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we consider a stochastic system (5.21) with constant diffusion matrix α, and study

the behavior of solutions near a stable steady point of (5.20). Both models (5.3) with

(5.4)-(5.5) and (5.21) with h(y) being the vector f(y) of the malaria model (5.3) can

be used to study various aspects of malaria dynamics as will be explained in sections

5.5, 5.6 and the concluding section.

5.3 Existence of solutions for model (5.3) with (5.4)-

(5.5)

We denote by R3
+ the set of points xt = (x1, x2, x3) in R3 with positive coordinates

and consider the system (5.3) with initial values

x0 =
(
x0

1, x
0
2, x

0
3

)
∈ R3

+. (5.6)

In this Section, we prove the following theorem:

Theorem 5.3.1 The system (5.3) with any initial value (5.6) has a unique solution

xt ∈ R3
+ for all t > 0, and

E | xt |2 ≤ Ceαt for t > 0,

where C and α are constants.
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For technical reasons, we modify the system (5.3) by replacing in f(xt) the nonlinear

term βx1x3 by the linearly bounded term βgε(x1)gε(x3) where

gε(s) =



0 if s < 0

s if 0 < s <
1

ε

1

ε
if s >

1

ε
,

(5.7)

where ε is an arbitrarily small positive number. We denote the modified f(xt) by

f ε(xt) and consider the stochastic system

dxεt = f ε (xεt) dt+ σ (xεt) dBt. (5.8)

Clearly

| f εε (x)− f εε (x̄) | ≤ Kε | x− x̄ |, (5.9)

| σ(x)− σ(x̄) | ≤ K | x− x̄ | (5.10)

for all x, x̄ ∈ R3, where Kε, K are constants. Hence, by Theorem 1.1 in [[62], Chapter

5], for any initial value x0 ∈ R3
+ there exists a unique solution xεt of (5.8) with xε0 = x0.

We denote by τε the exit time of xεt from the domain

R3
+ ∩

{
max
1≤i≤3

xi <
1

ε

}
,

and we may assume that this domain contains the initial point x0. We want to prove

that the system (5.8) possesses a nonnegative solution for t > 0, more precisely:

Lemma 5.3.2 For any T > 0 the solution xεt remains in R3
+ for all t < T ∧ τε, that

is, the components xεt,i of xεt satisfy:

xεt,i > 0 if t < T ∧ τε for i = 1, 2, 3;
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furthermore, the probability that τε < T is smaller than C0Tε where C0 is a constant

independent of ε.

Proof We introduce a Lyapunov-type function

V (x1, x2, x3) =
3∑
i=1

(xi − ki log xi) (5.11)

where ki are positive constants, and consider the differential of V (xεt) for t < T ∧ τε.

Since f ε (xεt) = f (xεt) if t < T ∧ τε, xεt satisfies the system (5.3) for t < T ∧ τε. Hence,

dV =
3∑
i=1

{(
1− ki

xi

)
+

ki
2x2

i

(dxi)
2

}
(5.12)

=

(
Λ− µ1x1 +

k1

2
σ2

1 −
k1

2x1

Λ + k1µ1 + k1βx3 − µ2x2 +
k2

2
σ2

2

− k2
x1x3

x2

+ k2(µ2 + γ)− µ3x3 − βx1x3

+
k3

2
σ2

3 − rγk3
x2

x3

+ µ2k3 + βk3x1

)
dt−

3∑
i=1

σi(xi − ki)dBi. (5.13)

We choose k3 = µ1/β, k1 = µ3/β, so that the linear terms in x1 and x3 become equal

to zero. The differential of V (xt) can then be written as

dV ≤ LV −
3∑
i=1

σi(xi − ki)dBi (5.14)

where

M = Λ + k1µ1 + k2(µ2 + γ) + µ2k3 +
k1

2
σ2

1 +
k2

2
σ2

2 +
k3

2
σ2

3, (5.15)

LV = Mdt−
(
k1

2
Λ + µ2x2 + k2

x1x3

x2

+ βx1x3 + rγk3
x2

x3

)
dt, (5.16)

and the sum in the parenthesis of (5.16) is positive since the x′is are positive when

t < T ∧ τε.



PhD Thesis 86

Integrating (5.14), we obtain

∫ T∧τε

0

dV (X(t)) ≤
∫ T∧τε

0

Mdt

−
∫ T∧τε

0

Σ3
j=1 (xj − kj)σjdBj,

and taking the expectation, we get a bound independent of ε,

E
[
V (xεT∧τε)

]
≤ V (x0) +MT. (5.17)

If a path xεt(ω) is such that it exits R3
+ at T ∧ τε, then by (5.11) V becomes +∞

at the exit point. In view of (5.17), the probability of this occurrence is zero. We

conclude that xεt does not exit R3
+, so that all its components are strictly positive for

t ≤ T ∧ τε.

On the other hand, xεt may exit the set

S 1
ε

=

{
max
1≤i≤3

xi <
1

ε

}
,

but in view of (5.17) and the form of V (x), the probability, P, of this event is less

than C0Tε, where C0 is a constant independent of x0 if x0 remains in a fixed bounded

set, that is

P (τε < T ) ≤ C0Tε. (5.18)

This completes the proof of Lemma 5.3.2. Next, we prove Theorem 5.3.3,that is,
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Theorem 5.3.3 The system (5.3) with any initial value (5.6) has a unique solution

xt ∈ R3
+ for all t > 0, and

E | xt |2 ≤ Ceαt for t > 0,

where C and α are constants.

Proof Set

yt = xεt,1 + 2xεt,2 + xεt,3,

and recall, by Lemma 5.3.2, that xεt,i > 0 for t < T ∧ τε. Clearly,

dyt∧τε = (Λ + Ayt∧τε) dt+
3∑
i=1

σix
ε
t∧τε,idBt∧τε,i,

where A is a constant vector. By using the relations

dy2 = 2ydy +
1

2
(dy)2 ,

E

[∫ t∧τε

0

ht,idBi(t) •
∫ t∧τε

0

ht,jdBt,j

]
= δij

∫ t∧τε

0

h2
t,jdt,

we find that the function

ψ(t) = E | yt∧τε |2

satisfies an inequality of the form

ψ(t) ≤ C1 + C2

∫ t

0

ψ(s)ds for all t < T (5.19)

where Ci are positive constants. Hence

ψ(t) ≤ Ceαt for t < T,
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which implies that

E | xt∧τε |2 ≤ Ceαt

for some positive constants α and C. We now write the system (5.3) in integrated

form and take ε → 0. Using (5.18), we can then show by a standard argument that

xt = limxεt exists for a sequence ε → 0 and it is a solution of (5.3) subject to (5.6).

Uniqueness of the solution follows from Theorem 2.1 in [Friedman, Chap. 5].

5.4 The case of constant diffusion

In this section we consider a dynamical system

dy

dt
= h(y) (5.20)

and a corresponding stochastic system

dyt = h(yt)dt+ αdBt (5.21)

where Bt is a 3-D column vector of independent Brownian motions with B0 = 0 and

variance 1, and

α =



α1 0 0

0 α2 0

0 0 α3


, αj 6= 0 for j = 1, 2, 3. (5.22)

If h(y) is uniformly Lipschitz continuous, then there exists a unique solution of (5.21)

for any initial values. Let

ys = (ys1, y
s
2, y

s
3)
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be any asymptotically stable steady point of (5.20). We wish to study to what extent

ys is also a stable point for the stochastic system (5.21). Clearly

h(ys) = 0 (5.23)

and

(y − ys)Js(y − ys) ≤ −1

2
µ | y − ys |2 (5.24)

where Js is the Jacobian matrix whose elements are computed at any point in some

small ball Bδ(y
s) with radius δ and center ys, and µ is a positive constant. We

denote by τy0 the exit time of yt from Bδ(y
s). In the sequel, we shall need to compute

E [t ∧ τy0 ] . To do that we first note that the probability P (τy0 > T ) can be computed

as follows [[62], page 92]: Let ΨT denote the solution of the parabolic system

∂Ψ

∂t
+ h(y).∇yΨ +

1

2
α2∇2

yΨ = 0 in Bδ(y
s)× (0, T ),

Ψ = 0 on ∂Bδ(y
s)× (0, T ), (5.25)

Ψ = 1 on Bδ(y
s)× {t = T}. (5.26)

Then [ [62], page 84]

P (τy0 > T ) = ΨT (y0, 0) for any y0 ∈ Bδ(y
s). (5.27)

Next, we write

E [t ∧ τy0 ] = tP (τy0 > t) + E [(τy0 < t)χ]

where χ is characteristic function of the set {τy < t}. Then

E [(τy0 < t)χ] = lim
n→∞

n−1∑
i=1

ti

n
P

[
ti

n
< τy0 <

t(i+ 1)

n

]
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= lim
n→∞

n−1∑
i=1

ti

n

{
P

(
τy0 >

ti

n

)
− P

(
τy0 >

t(i+ 1)

n

)}

= lim
n→∞

n−1∑
i=1

[
t(i+ 1)

n
− ti

n

]
P

(
τy0 >

ti

n

)
− tP (τy0 > t)

=

∫ t

0

Ψu(y0, 0)du− tP (τy0 > t),

by (5.27). Hence

E [t ∧ τy0 ] =

∫ t

0

Ψu(y0, 0)du. (5.28)

If ỹt ≡ yt∧τy0 , then ỹt ∈ Bδ(y
s), ,

dỹt = h(ỹt)dt+ αdBt∧τy0 ,

and

h(ỹt) = Js(ỹt − ys)

where

Js =

(
∂hi(ỹij)

∂yj

)
, ỹij ∈ Bδ(y

s).

By (5.24),

(ỹt − ys)Js(ỹt − ys) ≤ −1

2
µ | ỹt − ys |2 . (5.29)

Using this in the relation

1

2
d | ỹt − ys |2 = (ỹt − ys)dỹt +

1

2
α2d(t ∧ τy0)

= (ỹt − ys)Js(ỹt − ys) + (ỹt − ys)αdBt∧τy0 +
1

2
α2d(t ∧ τy0),
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we thus get

d(| ỹt − ys |2 eµt) ≤ 2eµt(ỹt − ys)αdBt∧τy0 + eµtα2d(t ∧ τy0).

(5.31)

Integrating in t and taking expectations we conclude that

E | ỹt − ys |2 ≤ E | y0 − ys |2 e−µt +

∫ t

0

e−µ(t−u)α2Ψu(y0, 0)du (5.32)

where we have used (5.28). The estimate (5.32) shows that the asymptotic stability

of ys with respect to the stochastic process (5.21) holds for paths that remain within

the δ−neighborhood of the steady point ys but it is degraded by the diffusion term

αdBt. Thus, the Brownian diffusion term destabilizes the stable deterministic state.

Remark 5.4.1 The above considerations hold also for stochastic processes (5.21)

with arbitrary matrix α of constant coefficients, α = (αij), provided we define

α2 = Σ3
i,j=1αijαji (5.33)

5.5 Example 1: Malaria model with constant dif-

fusion matrix

As our first example, we consider a stochastic system (5.21) with

h(yt) ≡ f (yt) =


Λ− µ1y1 − βy1y3

βy1y3 − (µ2 + γ)y2

rγy2 − µ3y3 − βy1y3

 . (5.34)
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Note that f(y) is not uniformly Lipschitz continuous. Nevertheless, one can prove

existence and uniqueness of the solution of (5.21) with (5.34) as the drift matrix as

in the case of Theorem 5.3.3, using the Lyapunov-type function

V (y) = exp (y1 + y2 + λ3y3) ,

with λ3 large enough to show that

E[V (yεT∧τε)] ≤ V0e
MT

V0 = exp
(
y0

1 + y0
2 + λ3y

0
3

)
for some constant M and thus conclude the existence and uniqueness of the solution

for any initial value y0 ∈ R3. Recall (Remark 5.2.1) that if the initial value lies in

R3
+ and α2 is small, then the state variables will remain in R3

+ with high probability.

The model (5.21) with drift matrix (5.34) corresponds to the malaria model (5.1)

with Brownian noise in the measurement of the state variables. Biologically, it could

represent a host who suffers from chronic illnesses that are not related to malaria but

have a significant impact on the population of red blood cells, for example, a schisto-

some patient, but could also represent different responses of the immune system, as

will be illustrated in section 5.8.

The deterministic system of (5.20),(5.34), possesses a parasite-free steady state, E0 =(
Λ

µr
, 0, 0

)
, with the basic reproduction number (cf [11])

R0c =
Λβ ((r − 1)γ − µ2)

µ1(µ2 + γ)µ3

. (5.35)

If R0c < 1 then E0 is stable with respect to the process (5.20), but the stability with

respect to (5.21)-(5.34) is to be understood only in the sense of (5.32). If R0c > 1,
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then there exists a parasite-present steady state given by

ys10 =
(µ2 + γ)µ3

β ((r − 1)γ − µ2)
, ys20 =

µ1µ3

β ((r − 1)γ − µ2)
(R0c − 1) , ys30 =

µ1

β
(R0c − 1) .

This steady state is stable with respect to the process (5.23) [23], but again, its

stability with respect to the stochastic system (5.21) is degraded by the diffusion

term αdBt.

Remark 5.5.1 If the noises Bt,1, Bt,2 and Bt,3 are correlated, then in the stochastic

process (5.21) α is no longer a diagonal matrix. For example, if

α =



α1 0 0

α12 α2 0

α13 0 α3


,

where α12 and α13 can be viewed as correlation coefficients. This describes an environ-

ment in which the processes of infection of susceptible red blood cells and the bursting

of infected red blood cells are correlated or synchronized [3] which is a strategy used

by the parasite to invade the immune response. Since synchronization increases α2

(see 5.33) by virtue of (5.32), this results in weakened stability for the steady state

of (5.21).
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5.6 Example 2: Malaria model with linear diffu-

sion matrix

In this example, we consider the stochastic system (5.3) with drift and diffusion

matrices given by (5.4) and (5.5), respectively, and make a change of variable yj =

− log xj. Setting gj(y) = (1/xj)fj(x), we get

dyt = gt(y)dt+ σdBt. (5.36)

The transformed stochastic system (5.36) has constant diffusion coefficients and in

component form (dropping the subindex t) it is given by:

dy1 =
1

y1

((
µ1 +

1

2
σ2

1

)
y1 − Λ + βy1y3

)
dt+ σ1dB1, (5.37)

dy2 =
1

y2

((
µ2 + γ +

1

2
σ2

2

)
y2 − βy1y3

)
dt+ σ2dB2, (5.38)

dy3 =
1

y3

((
µ3 +

1

2
σ2

3

)
y3 − rγy2 + βy1y3

)
dt+ σ3dB3.

(5.39)

From the form of the functions gj(y), we can see that the system (5.36) possesses only

a parasite-present state ys = (ys1, y
s
2, y

s
3), which is obtained by solving the equations

gj(y) = 0 (j = 1, 2, 3) : (
µ1 +

1

2
σ2

1

)
ys1 + βys1y

s
3 = Λ, (5.40)

βys1y
s
3 −

(
µ2 + γ +

1

2
σ2

2

)
ys2 = 0, (5.41)

−rγys2 + βys1y
s
3 +

(
µ3 +

1

2
σ2

3

)
ys3 = 0. (5.42)
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Eliminating the quadratic terms from (5.41) we obtain

(
µ1 +

1

2
σ2

1

)
ys1 +

(
µ2 + γ +

1

2
σ2

2

)
ys2 = Λ, (5.43)

(
(1− r)γ + µ2 +

1

2
σ2

2

)
ys2 +

(
µ3 +

1

2
σ2

3

)
ys3 = 0. (5.44)

Solving (5.43)-(5.44) using the relation (5.41) gives the parasite-present steady state:

ys1 =

(
γ + (µ2 +

1

2
σ2

2)

)(
µ3 +

1

2
σ2

3

)
β

(
(r − 1)γ −

(
µ2 +

1

2
σ2

2

)) , (5.45)

ys2 =

(
µ1 +

1

2
σ2

1

)(
µ3 +

1

2
σ2

3

)
β

(
r − 1)γ −

(
µ2 +

1

2
σ2

2

)) (R0 − 1) , (5.46)

ys3 =

(
µ1 +

1

2
σ2

1

)
β

(R0 − 1) , (5.47)

where

R0 =

βΛ

(
r − 1)γ −

(
µ2 +

1

2
σ2

2

))
(
µ1 +

1

2
σ2

1

)(
γ + µ2 +

1

2
σ2

2

)(
µ3 +

1

2
σ2

3

) . (5.48)

The solution lies in R3
+ if and only if R0 > 1. For the system (5.36), we have

Js(y) =



Λ

y2
1

0 β

−βy3

y2

βy1y3

y2
2

−βy1

y2

β −rγ
y3

rγy2

y2
3


, (5.49)
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and the stability of the steady state ys is determined by the eigenvalues of the trans-

formed Jacobian matrix (5.49) at ys. The eigenvalue equation of (5.49) is given by

a3λ
3 + a2λ

2 + a1λ+ a0 = 0,

where

a3 = 1

a2 = −
(

Λ

ys1
+
βys1y

s
3

ys22

+
rγys2
ys23

)
, (5.50)

a1 =
βΛys1y

s
3

ys21 y
s2
2

+
rγΛys2
ys21 y

s2
3

− β2,

a0 =
β3ys1y

s
3

ys22

− rγβ2

ys2
.

Since a2 < 0, by the Routh-Hurwitz criteria the steady state is unstable.

Remark 5.6.1 From (5.46)-(5.47 ) we see that a parasite-present steady states exists

if and only if R0 > 1, and from (5.35) and (5.48) we see that R0 < R0c.

These observations suggest the following:

• The deterministic model overestimates the severity of the disease, compared to the

stochastic model with linear diffusion matrix.

• With no parasite-free steady state for the model with linear diffusion matrix, any

infection with initial parasite load develops into a clinical case.

Thus, even if one can reduce R0 as close to 1 as possible, by direct treatment or by

bolstering the immune effector cells, there will always be a residue of malaria parasites

within the host.
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Remark 5.6.2 The malaria in the parasite-present steady state is more severe in

the constant diffusion case than in the linear diffusion case, that is, ys1 > ys10, y
s
2 <

ys20, y
s
3 < ys30.

The remark can be proved as shown in the following proof.

Proof It is easy to see that ys1 decreases if σ2
1, σ

2
2 and σ2

3 decrease, so that ys1 > ys10.

Next,

ys2 =
(µ1 + (1/2)σ2

1)(µ3 + (1/2)σ2
3)

β((r − 1)γ − (µ2 + (1/2)σ2
2))

(R0 − 1)

=
Λ

(γ + µ2 + (1/2)σ2
2)
− (µ1 + (1/2)σ2

1)(µ3 + (1/2)σ2
3)

β((r − 1)γ − (µ2 + (1/2)σ2
2))

<
Λ

(γ + µ2 + (1/2)σ2
2)
− µ1µ3

β((r − 1)γ − (µ2 + (1/2)σ2
2))

=
µ1µ3

β((r − 1)γ − (µ2 + (1/2)σ2
2))
Λβ((r − 1)γ − (µ2 + (1/2)σ2

2))

µ1(γ + µ2 + (1/2)σ2
2)µ3

− 1
<

µ1µ3

β((r − 1)γ − µ2))
(R0 − 1) = ys20.

Finally,

ys3 =
(µ1 + (1/2)σ2

1)

β
(R0 − 1)

=
Λ((r − 1)γ − (µ2 + (1/2)σ2

2))

(γ + µ2 + (1/2)σ2
2)(µ3 + (1/2)σ2

3)
− (µ1 + (1/2)σ2

1)

β

<
Λ((r − 1)γ − µ2)

(γ + µ2)µ3

− µ1

β

=
µ1

β
(R0c − 1) = ys30.
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5.7 Numerical simulations

Figures (5.1)-(5.3) shows how a linear diffusion matrix (model (5.2) )introduces a

much higher instability into the original deterministic system given in Chapter 3. For

parameter values used see [11].
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Figure 5.1: A deterministic (σ1 = 0) and stochastic graph with linear diffusion

coefficient (σ1 = 0.1) for the RBCs density over time. Parameter values used:

Λ = 2.5 × 109, µr = 0.8, β = 2 × 10−11.3, µi = 0.5, µp = 0, r = 12, with initial

conditions R(0) = 5× 109, Ri(0) = 10, P (0) = 2× 104.

5.8 Interpretation of patients data

Plasimodium falciparum infections are erythrocytic and are maintained by asexual

replication of the parasite during the red blood stage [10]. A study by Hoshen et al [3]

formulated a model of within-host dynamics of P.falciparum malaria which showed

that synchronicity of malaria pathogenesis processes is an inherent feature for this
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Figure 5.2: A deterministic (σ1 = 0) and stochastic graph with linear diffusion

coefficient (σ1 = 0.1) for the IRBCs density over time. Parameter values used:

Λ = 2.5 × 109, µr = 0.8, β = 2 × 10−11.3, µi = 0.5, µp = 0, r = 12, with initial

conditions R(0) = 5× 109, Ri(0) = 10, P (0) = 2× 104.
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Figure 5.3: A deterministic (σ1 = 0) and stochastic graph with linear diffusion

coefficient (σ1 = 0.1) for the parasite density over time. Parameter values used:

Λ = 2.5 × 109, µr = 0.8, β = 2 × 10−11.3, µi = 0.5, µp = 0, r = 12, with initial

conditions R(0) = 5× 109, Ri(0) = 10, P (0) = 2× 104.
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parasite. Another clinical study of individuals infected with P.vivax malaria reported

in White [21] has shown that P.vivax infections exhibit disease relapse tendencies,

that are maintained by parasite release from the liver stage.

To characterize these two manifestations in malaria infections, we have formulated

two stochastic models, one with constant diffusion matrix and another with linear

diffusion matrix. The models with constant diffusion coefficients describes a process

possessing both parasite-free and parasite-present states. The stability behavior of

its deterministic system is such that if R0c < 1, then the parasite-free steady state

is globally asymptotically stable and if R0c > 1, then the parasite-present steady is

asymptotically stable. The stochastic model (5.21) (with 5.34) shows that the stabil-

ity of the parasite-present steady state would degrade with time, but treatment with

effective drugs that reduce R0c to levels below 1 could clear the infection. The study

by Hoshen et al [3] has described plasmodium falciparum infections as synchronized

processes. That study [3] was subsequently followed by many authors (see [56] and

the references therein) who tried to include synchronization as a clinical feature of in-

fection by formulating deterministic models with periodic coefficients to compensate

for the lack of synchronicity in the Anderson et al [10] model. The model (5.21) (with

5.34) achieves the same goal without imposing the artificial periodic behavior on the

coefficients. We have found out that the model (5.21), (5.23) with a matrix of con-

stant coefficients, α = (αij), as depicted in Remark 5.4.1, describes a malaria disease

in which the infection processes are synchronized by the structure of the Brownian

diffusion matrix, and it can be used to explain malaria infections that are curable,

such as p. falciparum. Furthermore, we have found that the effect of synchronized
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Brownian diffusion is to re-inforce the parasite-present state. As we have suggested,

this is a strategy used by the parasite to evade the immune response; eventually,

however , the Brownian noise destabilizes the steady state.

The stochastic model with linear diffusion matrix (5.4) possesses only a parasite-

present steady state. In this case the threshold parameter, R0, can be reduced (by

treatment) as close to 1 as possible but it still remains above 1, so full recovery is not

possible. The stability analysis of the steady state shows that it is always unstable.

Our conclusions seem to fit with results reported in a clinical study by White [21]

which describes a group of patients in treatment for p. vivax malaria whose infection

was never cleared by treatment and whose infection exhibited relapse tendencies.

The two stochastic models (5.21) (with 5.34) and (5.4) can be used to study diseases

with equilibria exhibiting changes in stability. We illustrate this using clinical records

of individuals who where infected with a single mosquito bite with the Chesson strain

of P.vivax [21]. We have chosen six individuals from that study, identified as S-205, S-

197, S-196, S-209,S-198 and S-208, each individual representing a group of volunteers

exhibiting a similar response. The trajectories of the disease are shown in Figures 5.4

to 5.9. Three volunteers S-196, S-197, and S-205 (with profiles in Figure 5.4, 5.8,5.9)

were infected with a single mosquito bite at time t = 1day, and re-infected twice at

times t = 200days and t = 400days. The other three volunteers S-198, S-208, and

S-209 (with profiles in Figures 5.5, 5.6,5.7) were infected with a single mosquito bite

at time t = 1day but were never re-infected during the remaining period of the study.

From the disease progression profiles of the six volunteers, we can classify the im-

mune responses in terms of the diffusion structure as follows: (i) those whose im-
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mune response can be explained by the linear diffusion matrix only, (ii) those whose

immune response can be explained by the constant diffusion matrix only, and (iii)

those whose disease progression pattern switched from the constant diffusion to lin-

ear type. Our analysis of the patient data in White [21] will assume that in the

constant diffusion case if R0c < 1, then the parasite-free steady state is maintained

by the patient’s strong immunity. However, once the patient’s immunity is compro-

mised, that is, if R0c increases above 1, then a patient’s prognosis can change to the

parasite-present treatable case. For the linear diffusion case, the patient maintains

an unstable parasite-present untreatable steady state with a reproduction number

always greater than 1.

Figures 5.4 and 5.5 show two contrasting responses both explained by the linear dif-

fusion matrix. Figure 5.4 gives the disease profile of a patient (S-197) whose response

to infection and re-infection shows a relapse pattern with arbitrary relapse periods

after each re-infecion. Each infection was characterized by disease relapse (unsta-

ble parasite-present states). This volunteer possessed an unstable parasite-present

untreatable state with a reproduction number which remained above 1 during the

entire period of infection. Figure 5.5 describes an infection profile for patient S-198

who was infected once at day 1. The patient tested negative for the malaria parasite

after treatment, and remained asymptotic until day 500 when there was a malaria

disease relapse, which suggests that some parasites remained but pathogenesis was

controlled by the immune system, which kept the reproduction close but just above

1. This immunity was gradually compromised at day 500.

Figure 5.6 (volunteer S-208) and 5.7 (volunteer S-209) show two disease patterns that
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can be explained by the constant diffusion matrix. Figure 5.6 shows an immune

response which had to overcome parasite escape. The patient suffered two disease re-

lapses after the primary infection before recovering fully. Figure 5.7 shows a different

immune response that easily overcome the pathogen resulting in a patient recovering

fully after treatment.

Figure 5.8 (volunteer S-205) shows a switching type response to infection; from con-

stant diffusion type to linear diffusion type. Indeed the volunteer S-205 developed

clinical symptoms of malaria following the primary infection. The primary infection

was successfully treated (model (5.21)), and this individual’s baseline resistance to

infection remained strong for some time, but repeated re-infection weakened this re-

sistance as S-205 progressed to a permanent unstable parasite-present untreatable

status with arbitrary relapse periods.

Figure 5.9 shows a more complicated response for S-196 which seems to mimic a

switch from linear diffusion as in the progression pattern similar to Figure 5.4 to

the constant diffusion as in a disease pattern similar to Figure 5.6. However, from

the considerations in section 5.6 we see that if the primary and first re-infection had

resulted into an infection explained by linear diffusion matrix then complete recov-

ery was not possible whereas this patient did recover. Hence, the patient’s disease

progression can only be explained using the model with constant diffusion matrix

(model (5.21)). This patient’s clinical condition was characterized by a long period

of active disease as in Figure 5.4, which turned out to be a stable parasite-present

treatable state. The patient responded positively to treatment at t = 300 days and

recovered with strong immunity that resisted the second re-infection at t = 400 days.
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The disease progression pattern for S-196 is an example of how complicated malaria

diagnosis can be.

Figure 5.4: Patient s-197 immune response explained by linear diffusion matrix. This

describes an unstable parasite-present state

Figure 5.5: Patient’s immune response explained by a linear diffusion matrix. This

describes symptomatic state which is followed by an asymptomatic state and again

by a symptomatic state
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Figure 5.6: Patient’s immune response explained by a constant diffusion matrix. This

represents a stable parasite-present treatable state

Figure 5.7: Patient’s immune response explained by a constant diffusion matrix. This

represents a stable parasite-present treatable state
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Figure 5.8: Patient’s immune response explained by linear diffusion matrix. This

shows an unstable asymptomatic parasite-present state which degraded into a symp-

tomatic unstable parasite-present state

Figure 5.9: Patient’s immune response explained by linear diffusion matrix. This

represents an unstable parasite-present treatable state



Chapter 6

Conclusions and Discussions

An inhost treatment model for plasmodium falciparum infection was developed in

Chapter 3, based on the earlier work of Anderson et al, and others thereafter. In this

chapter, we explored the drug therapy benefits, following treatment with antimalarial

drugs. Using numerical simulations of the model, it is shown that infection can be

eradicated within the host if the drug efficacy level exceeds a threshold value of

approximately 0.9532. It will persist if the efficacy is below this threshold value.

Despite the public health importance of placental malaria, its impact on pregnancy

outcome in sub-Saharan Africa has not been comprehensively reviewed [77]. The

quantification of the contribution of malaria and its treatment to maternal morbidity

and mortality will help provide the evidence necessary to improve the effectiveness of

advocacy to incorporate malaria prevention strategies in Safe Motherhood Programs

(SMP) [77].

In chapter 4 we provide, just but, an insight into the possible public health outcomes

in the case management of malaria in pregnant mothers with reduced harm to the
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foetus. The model without delay, (4.8)-(4.13), is shown to possess three infected

states, that is, an infected state where the erythrocytic infection in the host is active

but latent in the foetus that is locally stable for R0at > 1 and R0ft < 1, a state

where the erythrocytic infections are active in both the mother and the foetus which

is locally stable for R0at > 1 and R0ft > 1, and lastly, a state where the erythrocytic

infections are under control in the mother but active in the foetus which exist for for

R0at < 1 and R0ft > 1.

Numerical simulations have shown that administering antimalarial drugs with a drug

efficacy level between 0.982 and 0.983 at an estimated placental drug transfer per-

miability coefficient of at least η = 0.97, we will be able to completely wipe out the

disease from both the mother and foetus. Because of the changes in the permiability

properties of the placenta during pregnancy, administering a drug with efficacy of

0.95 might not help in clearing the infection in the mother at any stage of pregnancy

and a drug efficacy level of 0.983 will completely clear the malaria parasite in both

the mother and foetus irrespective of the stage of pregnancy.

In the presence of intracellular delay, we determined a critical delay parameter τ0

where delay might cause instability to the endemic state as τ passes through the crit-

ical value (see figure 4.5), though our model is not exhibiting that for the parameter

values given in table (4.1), at the drug efficacy level of ε1 = 0.983 (see 4.6).

Due to White N. J. [21]’s review on a clinical study for patients infected with vivax

malaria; while some recovered others suffred relapses even after treatment. These

findings motivated the birth of the stochastic analysis of malaria inhost dynamics in
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Chapter 5. It is well known that responses to disease infection and treatment can be

highly personalized, often depending on the patient’s immune system. Mathematical

models of disease progression and treatment are almost always described by a system

of deterministic differential equations. The variability in patients response to the same

treatment is then explained by varying some of the parameters of the equations; these

parameters are viewed ad ”personalized” parameters which depend on the patient’s

immune system(see, for example, [72, 73] ). In chapter 5 we have developed, in the

case of a simple malaria model, a new approach that can explain such personalized

responses. We have introduced a stochastic model with constant or linear diffusion

matrix and demonstrate, using actual data, how varied patients response can be

explained by the model. We believe that this new stochastic approach should be

applicable to many other disease models, including for exaple HIV/AIDS, and that

it could also be useful in developing prognosis tools.
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Chapter 7

Appendices

7.1 Appendix

Proof The Jacobian matrix of the system 4.8-4.13 evaluated at xo is given by:

Jxo =



−µr 0 −βaΠa
µr

0 0 0

0 −(α + δ) βa
Πa
µr

0 0 0

0 αr −(µp + βa
Πa
µr

) 0 0 0

0 0 0 −µf 0 −βf (δ)Πf
µf

0 δ 0 0 −αf βf (δ)
Πf
µf

0 δr 0 0 αfr −(µpf + βf (δ)
Πf
µf

)


.

The eigenvalues of Jxo arranged as foetus and adult host specific are given as follows:

For the Foetus:

λ1 = −µf ,

λ2 =
−(αf + (µpf + βf (δ)

Πf
µf

))−
√

(αf + (µpf + βf (δ)
Πf
µf

))2 + 4αf (µpf + βf (δ)
Πf
µf

)(R2
of − 1)

2
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λ3 =
−(αf + (µpf + βf (δ)

Πf
µf

)) +
√

(αf + (µpf + βf (δ)
Πf
µf

))2 + 4αf (µpf + βf (δ)
Πf
µf

)(R2
of − 1)

2

For the Adult host:

λ4 = −µr,

λ5 =
−(α + δ + µp + βa

Πa
ur

)−
√

(α + δ + µp + βa
Πa
ur

)2 + 4(α + δ)(µp + βa
Πa
µr

)(R2
oa − 1)

2

λ6 =
−(α + δ + µp + βa

Πa
ur

) +
√

(α + δ + µp + βa
Πa
ur

)2 + 4(α + δ)(µp + βa
Πa
µr

)(R2
oa − 1)

2
.

7.2 Matlab Codes

ANDERSON.m

function dydt=ANDERSON(t,y) dydt=zeros(size(y)); pia=41664;mur=0.8;betaa=8E-

4;alpha=0.5;r=16;mup=3;e=0.996;mu=0.8; R=y(1); RI=y(2); P=y(3); dydt(1)=pia-

mur*R-(1-e)*betaa*R*P; dydt(2)=(1-e)*betaa*R*P-(alpha)*RI; dydt(3)=alpha*r*RI-

mup*P-(1-e)*betaa*R*P; R1=r*(1-e)*betaa*pia; R2=mur*mup+(1-e)*betaa*pia; R3=R1/R2

ecrt=((r-1)*betaa*pia-mur*mup)/((r-1)*betaa*pia)

ANDERSONSOL.m

clc;

global pia mur betaa alpha r mup e subplot(1,1,1) hold on [t,y]=ode45(’ANDERSON’,[0
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20],[20000,20000,35000]); plot(t,y(:,3),’b’,’LineWidth’,2) title(’Concentration of IR-

BCs’) xlabel(’Time t (in days)’) ylabel(’R′i)holdoff

No time delay

function ddex12 global p1 u1 b1 a1 r u2 d k u4 a2 p2 u3 d1 e1 e2 n

sol = dde23(@ddex1de,[1],@ddex1hist,[0, 270]); figure(1) subplot(1,1,1) hold on plot(sol.x,sol.y(4,:),’black’,’LineWidth’,2)

title(’Vertical Transmission With Delay’); xlabel(’time t’); ylabel(’solution y’); hold

off function s = ddex1hist(t) s = [5*10(9); 0; 55 ∗ 10; 5 ∗ 10(9); 0; 0]; functiondydt =

ddex1de(t, y, Z)p1 = 2.5 ∗ 10(9);u1 = 0.022; b1 = 2 ∗ 10( − 11.3); a1 = 0.4; r =

12;u2 = 0.0208; d = 1; k = 2∗10(−11.3);u4 = 0.0208; a2 = 0.4; p2 = 2.5∗10(9);u3 =

0.022; e1 = 0.0;n = 0.4; e2 = n ∗ e1; t = 12; d1 = d ∗ 10( − 1); ylag1 = Z(:, 1); dy1dt =

p1−u1∗ y(1)− b1∗ (1− e1)∗ y(1)∗ y(3); dy2dt = b1∗ (1− e1)∗ y(1)∗ y(3)− (a1 +d)∗

y(2); dy3dt = a1∗r∗y(2)−u2∗y(3)−b1∗(1−e1)∗y(1)∗y(3); dy4dt = p2−u3∗y(4)−

k∗d∗(1−e2)∗y(4)∗ylag1(1); dy5dt = k∗d∗(1−e2)∗y(4)∗ylag2(6)−a2∗y(5); dy6dt =

a2 ∗ r ∗ ylag1(5) + d ∗ r ∗ y(2)−u4 ∗ ylag1(6)− k ∗ d ∗ (1− e2) ∗ y(4) ∗ ylag1(6); dydt =

[dy1dt; dy2dt; dy3dt; dy4dt; dy5dt; dy6dt]

With Time delay

function ddex12 global p1 u1 b1 a1 r u2 d k u4 a2 p2 u3 d1 e1 e2 n

sol = dde23(@ddex1de,[7],@ddex1hist,[0, 270]); figure(1) subplot(1,1,1) hold on plot(sol.x,sol.y(5,:),’black’,’LineWidth’,2)

title(’Vertical Transmission With Delay’); xlabel(’time t’); ylabel(’solution y’); hold

off function s = ddex1hist(t) s = [5*10(9); 0; 55 ∗ 10; 5 ∗ 10(9); 0; 0]; functiondydt =
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ddex1de(t, y, Z)p1 = 2.5 ∗ 10(9);u1 = 0.022; b1 = 2 ∗ 10( − 11.3); a1 = 1; r = 12;u2 =

0.022; d = 1; k = 2 ∗ 10( − 11.3);u4 = 0.022; a2 = 1; p2 = 2.5 ∗ 10(9);u3 = 0.022; e1 =

0.998;n = 0.92; e2 = n∗ e1; d1 = d∗ 10(− 1); ylag1 = Z(:, 1); dy1dt = p1−u1∗ y(1)−

b1 ∗ (1− e1) ∗ y(1) ∗ y(3); dy2dt = b1 ∗ (1− e1) ∗ y(1) ∗ y(3)− (a1 + d) ∗ y(2); dy3dt =

a1 ∗ r ∗ y(2)− u2 ∗ y(3)− b1 ∗ (1− e1) ∗ y(1) ∗ y(3); dy4dt = p2− u3 ∗ y(4)− k ∗ d ∗

(1− e2) ∗ y(4) ∗ ylag1(1); dy5dt = k ∗ d ∗ (1− e2) ∗ y(4) ∗ ylag1(6)− a2 ∗ y(5); dy6dt =

a2 ∗ r ∗ y(5) + d ∗ r ∗ y(2)− u4 ∗ ylag1(6)− k ∗ d ∗ (1− e2) ∗ y(4) ∗ ylag1(6); dydt =

[dy1dt; dy2dt; dy3dt; dy4dt; dy5dt; dy6dt]

stochastic model code

hold on subplot(1,1,1) N=10000; T=100; omega=2.5*109;mur = 0.8; beta = 2 ∗

10( − 11.3);mu1 = 0.5;mu2 = 0; r = 12; rho = 0.12;h = T/N ; t = (0 : h :

T );x = zeros(size(t)); y = zeros(size(t)); z = zeros(size(t));x(1) = 5 ∗ 10(9); y(1) =

10; z(1) = 2 ∗ 10(4); sigma = 0.1; fori = 1 : Nx(i + 1) = x(i) + (omega − mur ∗

x(i) − beta ∗ x(i) ∗ z(i)) ∗ h − sigma ∗ x(i) ∗ randn ∗ sqrt(h); y(i + 1) = y(i) +

(beta ∗ x(i) ∗ z(i) − mu1 ∗ y(i)) ∗ h − sigma ∗ y(i) ∗ randn ∗ sqrt(h); z(i + 1) =

z(i)+(r∗mu1∗y(i)−mu2∗z(i)−beta∗x(i)∗z(i))∗h−sigma∗z(i)∗randn∗sqrt(h); end;

plot(t,z); axis([0 100 0 5*109]); gridon; title(′DiffusionCoefficientisaLinearfunctionofthestatevariables′);xlabel(′time(days)′); ylabel(′Infectedredbloodcells′);holdoff


