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Abstract: We investigate the common features and the resemblance of the central parts of the different 

existing integration theories to obtain a more unified approach to the notion of integral. Our approach gives 

a presentation of the integral that does not require the development of measure theory. 
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1. Introduction 

Somewhere about the time a student reaches certain level of mathematical analysis, he/she may perhaps 

begin to wonder how many more forms the concept of integral can assume. It is desirable to have all the 

different but related approaches to integration put into fewer packages, so that it would not be necessary to 

do almost the same thing over, and over again for slightly different kinds of integral.  

Modern integration theory is the culmination of centuries of refinements and extensions of ideas dating 

back to the Greeks. The first attempt to provide the theory a firm foundation was started by Riemann in the 

mid nineteenth century. His approach successfully gave the expected answers to many already solved 

problems and led to useful results for many new problems. However, the Riemann integral (R-integral) is 

quickly found to be inadequate for more advanced mathematics. The R-integral does not interact well with 

taking limits of sequences of functions. To correct such an important deficiency, Lebesgue developed his 

integral around the turn of the twentieth century, that later became the official integral adopted by most 

mathematicians. As powerful as it is, the Lebesgue integral (L-integral) has also its own limitations. The 

L-integral does not fare well with the Fundamental Theorem of Calculus. Some improper integrals do not 

exist as L-integrals. In 1912, Denjoy introduced the theory of gauge integral (HK-integral). Such a theory 

was given its more elegant definition by Kurzweil in 1957, and later on developed by Henstock. McShane 

showed that the L-integral can also be presented as gauge integral and gets a definition of the McShane 

integral [1]. 

As more and more techniques of analysis were extended to normed vector spaces, the needs to come up 

with even more general approaches to the integration becomes obvious. The Bochner integral extends the 

L-integral to strongly measurable vector-valued functions (see [2], [3]). The Pettis integral also extends the 

L-integral to vector-valued functions by exploiting duality [4]. The Bartle-Dunford-Schwartz integral [5] 

integrates scalar functions with respect to σ-additive vector measure. Integration of vector valued functions 

with respect to vector valued measures has been investigated by some authors (see e.g. [6]).  

Recently, the author has introduced a novel approach to integration. Ideas and results related to such an 

approach can be seen in [7]-[12], Our aim in this paper is to give an overview of such new approach by 

gathering the main ideas from the above listed references. We give a treatment of the integration theory 
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that is not only more unified but is also elegant and easily understood. 

2. Brief Review of the Classical Integrals 

We shall denote by 𝐼(𝑎, 𝑏) any interval with end points 𝑎 < 𝑏 and by ℓ(𝐼(𝑎, 𝑏)) = 𝑏 − 𝑎 its length. A 

partition of [𝑎, 𝑏]  is a collection 𝑃 = { 𝐼(𝑎𝑖 , 𝑏𝑖) ∶ 𝑖 = 1, … , 𝑛 }  of finitely many pairwise disjoint 

subintervals 𝐼(𝑎𝑖 , 𝑏𝑖) whose union is [𝑎, 𝑏]. A partition 𝑃 is said to be tagged if for each 𝑖, a number 𝑡𝑖  is 

chosen from 𝐼(𝑎𝑖 , 𝑏𝑖). 𝑃 is then called a tagged partition. Given a function 𝑓: [𝑎, 𝑏]  → ℝ, and a tagged 

partition 𝑃 of [𝑎, 𝑏], the Riemann sum of 𝑓 at 𝑃 is the number 𝑆𝑓(𝑃) ∶= ∑ 𝑓(𝑡𝑖)
𝑛
1=1 ℓ(𝐼(𝑎𝑖 , 𝑏𝑖)).  

A number 𝐴 ∈ ℝ is the R-integral of a function 𝑓: [𝑎, 𝑏]  → ℝ if for every 𝜀 > 0, there is a constant 𝛿𝜀 > 0 

such that if 𝑃 is any tagged partition of [𝑎, 𝑏] satisfying [𝑎𝑖 , 𝑏𝑖] ⊂ (𝑡𝑖 − 𝛿𝜀 , 𝑡𝑖 + 𝛿𝜀),  |𝑆𝑓(𝑃) − 𝐴| < 𝜀. 

A more general definition of the integral is obtained if one allows 𝛿𝜀 to be any continuous positive 

function 𝛿: [𝑎, 𝑏] → (0, ∞) called a gauge function. A tagged partition 𝑃 of [𝑎, 𝑏] is said to be 𝛿-fine if  

0 < 𝑏𝑖 − 𝑎𝑖 < 𝛿(𝑡𝑖) for 𝑖 = 1, … , 𝑛. The existence of a 𝛿-fine partition is guaranteed by the Nested Intervals 

Theorem.  

A number 𝐴 ∈ ℝ is the HK-integral of a function 𝑓: [𝑎, 𝑏]  → ℝ if for every 𝜀 > 0, there is a function 

𝛿: [𝑎, 𝑏] → (0, ∞) such that if 𝑃 is any δ-fine tagged partition of [𝑎, 𝑏], |𝑆𝑓(𝑃) − 𝐴| < 𝜀.  

If we drop the requirement that for (𝐼(𝑎𝑖, 𝑏𝑖), 𝑡𝑖) ∈ 𝑃, 𝑡𝑖 ∈ 𝐼(𝑎𝑖 , 𝑏𝑖), then the above defined number A is 

exactly the McShane integral of 𝑓 over the interval [𝑎, 𝑏]. 

Given a non-empty set Ω, and Σ a 𝜎-algebra of subsets of Ω, a set function 𝜇: Σ → [0, ∞] is called a 

measure if it satisfies: 𝜇(∅) = 0  and 𝜇(⋃ 𝐸𝑘
∞
𝑘=1 ) = ∑ 𝜇(𝐸𝑘)∞

𝑘=1  for every collection {𝐸𝑘: 𝑘 ∈ ℕ}  of 

pairwise disjoint sets in Σ. The L-integral is first defined for non-negative simple functions, that is, 

functions of the form 𝑠 = ∑ 𝑎𝑘1𝑆𝑘𝑘 ,  where  𝑎𝑘 ≥ 0 ,  𝑆𝑘 ∈ Σ ,and 𝜇(𝑆𝑘) < ∞  whenever 𝑎𝑘 ≠ 0 : 

∫ 𝑠𝑑𝜇
Ω

= ∑ 𝑎𝑘𝜇(𝑆𝑘)𝑘 . Then for non-negative functions on Ω, one defines ∫ 𝑓𝑑𝜇
Ω

= sup {∫ 𝑓𝑑𝜇
Ω

: 0 ≤ 𝑠 ≤

𝑓, 𝑠 simple}. A function 𝑓 on Ω is measurable provided {𝜔: 𝑎 ≤ 𝑓(𝜔) < 𝑏} ∈ Σ for all 𝑎, 𝑏. For every 

measurable function 𝑓 on Ω, one can write 𝑓 = 𝑓+ − 𝑓−  where  𝑓+ ≔ 𝑓 ∨ 0 and 𝑓− ≔ −𝑓 ∧ 0. one 

then says that:  

The L-integral of a measurable function 𝑓: Ω → ℝ exists if  min {∫ 𝑓+𝑑𝜇
Ω

, ∫ 𝑓−𝑑𝜇
Ω

} < ∞. And in this 

case, the L-integral of 𝑓 is given by ∫ 𝑓𝑑𝜇
Ω

= ∫ 𝑓+𝑑𝜇
Ω

− ∫ 𝑓−𝑑𝜇
Ω

. 

The L-integral can be defined on domain spaces that do not require any topological notion. It has nice 

properties that made analysis involving integrals possible on a firm logical footing in ways that it has not 

been before. The L-integral allows us to work on nice spaces, namely, the 𝐿𝑃-spaces; that are in fact Banach 

spaces. By contrast, there is no known natural topology for the space of HK-integrable functions. For more 

details on the different approaches to classical integration theories, the reader is referred to [13]. 

3. Elements of Integration 

3.1. Integrators 

Let Σ be a semiring of subsets of a set Ω, and 𝑉 a normed vector space. By an integrator, we mean an 

additive set function 𝜇: Σ → 𝑉  satisfying: 𝜇(∅) = 0 , 𝑚𝑎𝑥{‖𝜇(𝐴)‖, ‖𝜇(𝐵)‖ }  ≤ ‖𝜇(𝐴 ∪ 𝐵)‖ ≤ ‖𝜇(𝐴)‖ +

‖𝜇(𝐵)‖ for disjoint 𝐴, 𝐵 in Σ such that 𝐴 ∪ 𝐵 ∈ Σ. The pair (Ω, 𝜇) shall be called an integrator 

space. 

The length function is an integrator of the semiring of subintervals. A measure is a non-negative real 

valued integrator defined on a σ -algebra. An outer measure defines an integrator on the power set of a set. 
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If 𝐴 ⊂ Ω, a finite family {𝐸𝑖 ∈ 𝛴: 𝑖 ∈ 𝐼} is said to be a Σ-cover of 𝐴 if 𝐴 ⊂ ⋃ 𝐸𝑖𝑖∈𝐼 .. The norm-variation of 

an integrator 𝜇: 𝛴 → 𝑉  is defined to be the extended real-valued set function  ‖𝜇‖: 2Ω →  [ 0, + ∞ ] 

defined by ‖𝜇‖(𝐴) ∶=  inf{∑ ‖𝜇(𝐸𝑖)‖𝑖∈𝐼  } where the infinimum is taken over all Σ-covers of the set 𝐴.  

3.2. Subpartitions 

Let Σ be a semiring of subsets of a set Ω, and 𝜇: 𝛴 → 𝑉 an integrator. We shall call a 𝜇-subpartition of 

Ω any finite subset 𝑃 of 𝛴 satisfying ‖𝜇(𝐼)‖ < ∞ for all 𝐼 ∈ 𝑃 and 𝐼 ∩ 𝐽 = ∅ for 𝐼 ≠ 𝐽 in  𝑃. The mesh 

of 𝑃 is defined to be  ‖𝑃‖ =  max {𝜇(𝐼) ∶ 𝐼 ∈ 𝑃}. We denote ⋃ 𝑃 ≔ ⋃ 𝐼𝐼∈𝑃 . We say that a 𝜇-subpartition 𝑃 

is: 

 tagged if for each 𝐼 ∈ 𝑃, one associates a point 𝑡𝐼 ∈ 𝐼 such that 𝑡𝐼 ≠ 𝑡𝐽 whenever  𝐼 ≠ 𝐽 in 𝑃. 

 unconditionally tagged if for each 𝐼 ∈ 𝑃, one associates 𝑡𝐼 ∈ ⋃ 𝑃  such that 𝑡𝐼 ≠ 𝑡𝐽  if 𝐼 ≠ 𝐽 in 𝑃.  

We denote by Π(Ω, 𝜇)  (resp. Π̃(Ω, 𝜇) ) the set of all tagged (resp. unconditionally tagged) 

𝜇-subpartitions of Ω. Clearly, we have Π(Ω, 𝜇) ⊂ Π̃(Ω, 𝜇).  

Let 𝑃, 𝑄 ∈ Π̃(Ω, 𝜇). Then 𝑄  is said to be a refinement of 𝑃 (we write 𝑄 ≻ 𝑃) if  ‖𝑄‖ ≤  ‖𝑃‖ and 

⋃ 𝑃 ⊂ ⋃ 𝑄. The relation ≻ is transitive. If 𝑃, 𝑄 ∈ Π̃(Ω, 𝜇), we denote 𝑃 ∧ 𝑄: = {𝐼\∪ 𝑄, 𝐼 ∩  𝐽, 𝐽\∪ 𝑃: 𝐼 ∈

 𝑃, 𝐽 ∈  𝑄}.  Clearly, 𝑃 ∧ 𝑄 ∈ Π̃(Ω, 𝜇) ,  𝑃 ∧ 𝑄 ≻ 𝑃  and 𝑃 ∧ 𝑄 ≻ 𝑄 . Thus, the relation ≻  has the upper 

bound property. We gather that both the sets Π(Ω, 𝜇) and Π̃(Ω, 𝜇) are directed [14] by the binary relation 

≻. 

3.3. Riemann-Tensor-Sums 

Let 𝑈, 𝑉 and 𝑊 be normed spaces and 𝜏: 𝑈 × 𝑉 → 𝑊 is a continuous bilinear mapping such that for 

every (𝑢, 𝑣) ∈ 𝑈 × 𝑉, the following inequality holds  ‖𝑢‖𝑈 ≤ sup{‖𝜏(𝑢, 𝑣)‖𝑊: ‖𝑣‖𝑉 ≤ 1}. We shall simply 

call such a mapping a tensor. For more details on tensor product, we refer the reader to [1]. For example:  

1) The duality tensor: 𝜏(𝑣, 𝑣′)  = 〈 𝑣, 𝑣′ 〉 from 𝑉 × 𝑉′ → 𝕂 where 𝑉′ is the dual of 𝑉, and 𝕂 = ℝ or 

ℂ. 

2) If 𝑉 is a Hilbert space, the inner product: 𝜏(𝑢, 𝑣) = 〈𝑢, 𝑣〉 from 𝑉 × 𝑉 → 𝕂, 

3) The scaling tensor: 𝜏(𝛼, 𝑣) = 𝛼𝑣 from 𝕂 × 𝑉 → 𝑉 (or 𝜏(𝑣, 𝛼) = 𝛼𝑣 from 𝑉 × 𝕂 → 𝑉).  

We define the Riemann-tensor-sum of a function 𝑓: Ω → 𝑈 at a 𝜇-subpartition 𝑃 to be the element 

𝑓𝜇(𝑃): = ∑ 𝜏(𝑓(𝑡𝐼), 𝜇(𝐼))𝐼∈𝑃  of 𝑊. Since (Π(Ω, 𝜇), ≻) (resp. (Π̃(Ω, 𝜇), ≻)) is a directed set, the mapping 

𝑃 ↦ 𝑓𝜇(𝑃) is a net. We denote the net-limit by ∫ 𝜏(𝑓, 𝜇)
Ω

∶= lim𝑃 𝑓𝜇(𝑃) (resp. ∫ 𝜏(𝑓, 𝜇)
∼

Ω
∶= lim�̃� 𝑓𝜇(�̃�) ) 

where 𝑃 (resp. �̃�)  runs through Π(Ω, 𝜇) (resp. Π̃(Ω, 𝜇)). See [14] for details on Moore-Smith limit. 

3.4. Definition of the Integral 

Definition 1. Let 𝑈, 𝑉 and 𝑊 be normed spaces, 𝜏: 𝑈 × 𝑉 → 𝑊 a tensor, Σ a semiring of subsets of a 

nonempty set Ω, and 𝜇: Σ → 𝑉 an integrator.  A function 𝑓: Ω → 𝑈 is integrable over Ω with respect to 𝜇 

if the limit ∫ 𝜏(𝑓, 𝜇)
Ω

 represents a vector in 𝑊. Such a vector is called the 𝜇-integral of 𝑓 over the set Ω.  

In other words, 𝑓: Ω → 𝑈 is 𝜇-integrable if there is ∫ 𝜏(𝑓, 𝜇)
Ω

∈ 𝑊 with the property that for every 

𝜀 > 0, there exists 𝑃0 ∈ Π(Ω, 𝜇) such that for every 𝑃 ∈ Π(Ω, 𝜇), 𝑃 ≻ 𝑃0 we have ‖∫ 𝜏(𝑓, 𝜇)
Ω

− 𝑓𝜇(𝑃)‖ <

𝜀.  

The uniqueness of net-limit ensures us that there exists at most one vector ∫ 𝜏(𝑓, 𝜇)
Ω

 that satisfies the 

property in the above Definition 1. We also notice that being a limit operator, the integral is linear. Thus, the 

set of all 𝜇-integrable functions 𝑓: Ω → 𝑈 is a vector space which we shall denote by ℐ(Ω, 𝜇, 𝑈).   

Let 𝐴 ⊂ Ω. Any 𝑃 ∈ Π(Ω, 𝜇) can be refined to get a partition 𝑃𝐴 consisting of sets in Σ that are either 
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subsets of 𝐴 or disjoint from 𝐴. Then ∫ 𝜏(𝑓1𝐴, 𝜇)
Ω

= lim𝑃𝐴
𝑓𝜇(𝑃𝐴) = lim

𝑃𝐴

∑ 𝑓(𝑡𝐼)𝜇(𝐼 ∩ 𝐴)𝐼∈𝑃 = ∫ 𝜏(𝑓, 𝜇).
𝐴

 

If 𝐴 ∩ 𝐵 = ∅, then every 𝑅 ∈ Π(𝐴 ∪ 𝐵, 𝜇) is of the form 𝑃 ∪ 𝑄 ≔ {𝐼 ∪ 𝐽: 𝐼 ∈ 𝑃, 𝐽 ∈ 𝑄 } where 𝑃 ∈ Π(𝐴, 𝜇) 

and 𝑄 ∈ Π(𝐵, 𝜇). It then follows that 𝑓𝜇(𝑅) = 𝑓𝜇(𝑃) + 𝑓𝜇(𝑄). Thus, if 𝑓: Ω → 𝑈 is 𝜇-integrable over both 

𝐴 and 𝐵, then 𝑓 is 𝜇-integrable over the union 𝐴 ∪ 𝐵 and ∫ 𝜏(𝑓, 𝜇)
𝐴∪𝐵

= ∫ 𝜏(𝑓, 𝜇)
𝐴

+ ∫ 𝜏(𝑓, 𝜇).
𝐵

  

If 𝜇(𝐴) = 0 then 𝑓𝜇(𝑃𝐴) = 0 and thus ∫ 𝜏(𝑓, 𝜇)
Ω

= 0. It follows that ∫ 𝜏(𝑓, 𝜇)
Ω

 =∫ 𝜏(𝑔, 𝜇)
Ω

 whenever  

‖𝜇‖(𝑥 ∈ Ω: 𝑓(𝑥) ≠ 𝑔(𝑥)) = 0. We say that two functions 𝑓, 𝑔: Ω → 𝑈 are 𝜇-equivalent and we write 𝑓 ∼ 𝑔 

if ‖𝜇‖(𝑥 ∈ Ω: 𝑓(𝑥) ≠ 𝑔(𝑥)) = 0. It is quickly seen that the relation 𝑓 ∼ 𝑔 is an equivalence relation on 

ℐ(Ω, 𝜇 , 𝑈). We then denote by 𝐼(Ω, 𝜇, 𝑈) the quotient space ℐ(Ω, 𝜇, 𝑈)/∼ . 

Since partitions are subpartitions, our approach extends the R-integral and the HK-integral. The use of 

subpartition also allows our approach to cover the improper integral. Unlike the L-integral, our approach 

integrates functions that are not necessarily measurable on sets that are not necessarily measurable.  

Definition 2. Let 𝑈, 𝑉 and 𝑊 be normed spaces, 𝜏: 𝑈 × 𝑉 → 𝑊 a tensor, Σ a semiring of subsets of a 

nonempty set Ω, and 𝜇: Σ → 𝑉 an integrator.  A function 𝑓: Ω → 𝑈 is unconditionally integrable over Ω 

with respect to 𝜇 if the limit ∫ 𝜏(𝑓, 𝜇)
∼

Ω
 represents a vector in 𝑊 . Such a vector is then called the 

unconditional 𝜇-integral over the set Ω.  

We shall denote by ℐ̃(Ω, 𝜇, 𝑈) the vector space of all unconditionally 𝜇-integrable functions and by 

𝐼(Ω, 𝜇, 𝑈) the quotient space ℐ̃(Ω, 𝜇, 𝑈)/∼. It is clear that ℐ̃(Ω, 𝜇 , 𝑈) ⊂ ℐ(Ω, 𝜇, 𝑈).  

 

A topology can be easily defined on the space ℐ(Ω, 𝜇, 𝑈). For every 𝑓: Ω → 𝑈, we define:  

 the 𝜇-variation of 𝑓 over 𝐴 to be   var𝜇(𝑓, 𝐴) ∶=  sup{‖𝑓𝜇(𝑃)‖ ∶ 𝑃 ∈ Π(Ω, 𝜇)} ; 

 the unconditional μ-variation of 𝑓 over 𝐴 to be var̃𝜇(𝑓, 𝐴) ∶=  sup{‖𝑓𝜇(𝑃)‖ ∶ 𝑃 ∈ Π̃(Ω, 𝜇)}. 

We say that 𝑓 is of bounded μ-variation (resp. unconditional μ-variation) over 𝐴 if var𝜇(𝑓, 𝐴) < ∞ 

(resp. var̃𝜇(𝑓, 𝐴) < ∞).  If the vector spaces 𝑈,𝑉 and 𝑊 are complete, we have the following interesting 

result. 

Theorem 1. Let 𝑈, 𝑉 and 𝑊 be Banach spaces, 𝜏: 𝑈 × 𝑉 → 𝑊 a tensor, Σ a semiring of subsets of a set 

Ω, and 𝜇: Σ → 𝑉 an integrator. If 𝐴 ⊂ Ω, ‖𝜇‖(𝐴) < ∞, then ℐ(𝐴, 𝜇, 𝑈) (resp. ℐ̃(𝐴, 𝜇, 𝑈)) is complete with 

respect to the seminorm var𝜇(𝑓, 𝐴) (resp. var̃𝜇(𝑓, 𝐴)). Hence, 𝐼(𝐴, 𝜇, 𝑈) (resp. 𝐼(𝐴, 𝜇, 𝑈)) is a Banach space. 

Proof. We prove the case of (𝐼(𝐴, 𝜇, 𝑈), var𝜇). Let 𝑛 ↦ 𝑓𝑛  be a Cauchy sequence in 𝐼(𝐴, 𝜇, 𝑈) with 

respect to var𝜇 . Fix 𝜀 > 0, and let 𝑁𝜀 > 0 such that for 𝑚, 𝑛 > 𝑁𝜀 in ℕ,  

 

sup{‖(𝑓𝑛 − 𝑓𝑚)𝜇(𝑃)‖ ∶ 𝑃 ∈ Π(𝐴, 𝜇)} < 𝜀.                  (4.1) 

 

For the subpartition {(𝐴, 𝑎)} ∈ Π(𝐴, 𝜇) , then for 𝑚, 𝑛 > 𝑁𝜀  in ℕ, ‖(𝑓𝑛 − 𝑓𝑚)𝜇(𝐴)‖
𝑊

< ‖𝜇‖(𝐴)𝜀. Since 

‖𝜇‖(𝐴) < ∞, we infer that the sequence 𝑛 ↦ 𝑓𝑛(𝑎) is Cauchy in 𝑊. Since 𝑊 is a Banach space, we can 

define 𝑎 ↦ 𝑓(𝑎) = lim𝑛→∞ 𝑓𝑛(𝑎).  Since 𝑓𝑛, 𝑓𝑚 ∈ 𝐼(𝐴, 𝜇, 𝑈), there exist 𝑃𝑛, 𝑃𝑚 ∈ Π(𝐴, 𝜇) such that  

 

 ‖(𝑓𝑛)𝜇(𝑃) − ∫ 𝑓𝑛𝑑𝜇
A

‖ < 𝜀  whenever  𝑃 ≻ 𝑃𝑛,  

 ‖(𝑓𝑚)𝜇(𝑃) − ∫ 𝑓𝑚𝑑𝜇
A

‖ < 𝜀  whenever  𝑃 ≻ 𝑃𝑚.  

Combining (4.1), (4.2) and (4.3), we have for 𝑚, 𝑛 > 𝑁𝜀 in ℕ and for 𝑃 ≻ 𝑃𝑛 ∨ 𝑃𝑚,  
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‖∫ 𝑓𝑚𝑑𝜇
A

− ∫ 𝑓𝑛𝑑𝜇
A

‖ ≤ ‖∫ 𝑓𝑚𝑑𝜇
A

− (𝑓𝑚)𝜇(𝑃)‖ + ‖(𝑓𝑛 − 𝑓𝑚)𝜇(𝑃)‖ + ‖(𝑓𝑛)𝜇(𝑃) − ∫ 𝑓𝑛𝑑𝜇
A

‖ < 3𝜀.  

 

Hence, the sequence 𝑛 ↦ ∫ 𝑓𝑛𝑑𝜇
A

 is Cauchy in 𝑈, and thus converges to, say 𝑢 ∈ 𝑈. Now since for 

𝑎 ∈ 𝐴 , 𝑓(𝑎) = lim𝑛→∞ 𝑓𝑛(𝑎) , there exists 𝑁𝑎 > 𝑁𝜀  such that for 

𝑚, 𝑛 > 𝑁𝜀 , ‖𝑓𝑛(𝑎) − 𝑓𝑚(𝑎)‖𝑈 ≤ 𝜀‖𝜇‖(𝐴)−1. It follows that for 𝑃 ∈ Π(A, Σ, μ), and for 𝑚, 𝑛 > max{𝑁𝑡𝐼
: 𝐼 ∈

𝑃}  = : 𝑁𝑃, we have  

 

‖(𝑓𝑛 − 𝑓𝑚)𝜇(𝑃)‖ ≤ ∑ ‖𝜇‖(𝐴)‖𝑓𝑛(𝑡𝐼) − 𝑓𝑚(𝑡𝐼)‖𝑈𝐼∈𝑃 < 𝜀.  

 

If we let 𝑚 → ∞, we obtain ‖(𝑓𝑛 − 𝑓)𝜇(𝑃)‖ ≤ 𝜀. Since 𝑢 = lim𝑛→∞ ∫ 𝑓𝑛𝑑𝜇
A

, there exists 𝑁 > 𝑁𝑃 such 

that ‖∫ 𝑓𝑚𝑑𝜇
A

− 𝑢‖ < 𝜀 whenever 𝑚 > 𝑁. Thus for 𝑛, 𝑚 > 𝑁, 

 

‖(𝑓𝑛)𝜇(𝑃) − 𝑢‖ ≤ ‖(𝑓𝑛 − 𝑓)𝜇(𝑃)‖ + ‖(𝑓𝑛 − 𝑓𝑚)𝜇(𝑃)‖ + ‖∫ 𝑓𝑚𝑑𝜇 − 𝑢
A

‖ < 𝜀.  

 

Since 𝜀 > 0 is arbitrary, this shows that 𝑓 ∈ ℐ(𝐴, 𝜇 , 𝑈) and that ∫ 𝑓𝑑𝜇 = 𝑢
A

.  The proof is complete.  

5. Cauchy Criterion for Integrability 

In this section, we give characterizations of 𝜇-integrability. Again, we fix normed vector spaces 𝑈 , 𝑉 and 

𝑊, a tensor 𝜏: 𝑈 × 𝑉 → 𝑊, a semiring Σ of subsets of a given nonempty set Ω, and an integrator 𝜇: Σ → 𝑉. 

Proposition 2. If 𝑓 ∈ ℐ(𝐴, 𝛴, 𝜇, 𝑈)  where 𝐴 is a given subset of Ω, then for every 𝜀 > 0 , there exists 

𝑃0 ∈ Π(𝐴, 𝜇) such that ‖𝑓𝜇(𝑄)‖ for every 𝑄 ∈ Π(A, 𝜇), 𝑄 ∩ 𝑃0 = ∅ and ‖𝑄‖ ≤ ‖𝑃0‖. 

Proof. Fix 𝜀 > 0. Let 𝑃0 ∈ Π(𝐴, 𝜇) such that ‖𝑓𝜇(𝑃) − ∫ 𝜏(𝑓, 𝜇)
𝐴

‖ < 𝜀/2 for every ∈ Π(𝐴, 𝜇), 𝑃 ≻ 𝑃0. 

Fix such a 𝑃 . Then for every 𝑄 ∈ Π(𝐴, 𝜇) such that 𝑄 ∩ 𝑃0 = ∅ and ‖𝑄‖ ≤ ‖𝑃0‖ , we have 𝑃0 ∨ 𝑄 ∈

Π(𝐴, 𝜇), 𝑃0 ∨ 𝑄 ≻ 𝑃0 and thus ‖𝑓𝜇(𝑃0 ∨ 𝑄) − ∫ 𝜏(𝑓, 𝜇)
𝐴

‖ < 𝜀/2. It follows that  

 

‖𝑓𝜇(𝑄)‖ ≤ ‖𝑓𝜇(𝑃0 ∨ 𝑄) − 𝑓𝜇(𝑃0 ∨ 𝑄)‖ ≤ ‖𝑓𝜇(𝑃0 ∨ 𝑄) − ∫ 𝜏(𝑓, 𝜇)
𝐴

‖ + ‖∫ 𝜏(𝑓, 𝜇)
𝐴

− 𝑓𝜇(𝑃0)‖ < 𝜀.  

 

The proof is complete.  

Similar result can be stated for ℐ̃(𝐴, 𝜇, 𝑈) and proved by simply using Π̃(𝐴, 𝜇) in lieu of  Π(𝐴, 𝜇).  Given 

𝑃, 𝑄 ∈  Π(𝐴, 𝜇), we shall denote 𝑃 ∧ 𝑄 ≔ {𝐼 ∩ 𝐽: 𝐼 ∈ 𝑃, 𝐽 ∈ 𝑄} and 𝑃 △ 𝑄 ≔ 𝑃 ∨ 𝑄 ∖ 𝑃 ∧ 𝑄. 

Definition 3. A function 𝑓: Ω → 𝑈 satisfy the Cauchy criterion for μ-integrability (resp. for unconditional 

μ-integrability) over a set 𝐴 ⊂ 𝛺 if for every 𝜀 > 0, there exists 𝑃0 ∈ Π(𝐴, 𝜇) (resp. 𝑃0 ∈ Π̃(𝐴, 𝜇)) such 

that if 𝑃, 𝑄 ∈ Π(𝐴, 𝜇) (resp. Π̃(𝐴, 𝜇)), 𝑃, 𝑄 ≻ 𝑃0, we have ‖𝑓𝜇(𝑃 ∨ 𝑄)  − 𝑓𝜇(𝑃 ∧ 𝑄)‖ < 𝜀. 

We notice that if 𝑃, 𝑄 ∈ Π(𝐴, 𝜇) (resp. Π̃(𝐴, 𝜇)), then ‖𝑓𝜇(𝑃 ∨ 𝑄)  − 𝑓𝜇(𝑃 ∧ 𝑄)‖ = ‖𝑓𝜇(𝑃 △ 𝑄) ‖.  

Proposition 4. A function 𝑓: Ω → 𝑈  satisfies the Cauchy criterion for μ-integrability (resp. for 

unconditional μ-integrability)  over a 𝐴 ⊂ 𝛺 if and only if for every 𝜀 > 0, there exists 𝑃0 ∈ Π(𝐴, 𝜇) (resp. 

𝑃0 ∈ Π̃(𝐴, 𝜇)) such that ‖𝑓𝜇(𝑄) ‖ < 𝜀  for every 𝑄 ∈ Π(𝐴, 𝜇), 𝑄 ∩ 𝑃0 = ∅.  

The converse of Proposition 2. holds for the case where 𝑈, 𝑉,𝑊 are complete. This follows from the 

well-known fact that for nets taking values in a Banach space, the Cauchy net condition is equivalent to the 

net convergence (see e.g. [14]). Clearly, the Cauchy conditions introduced in Definition 3 correspond exactly 
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to the Cauchy conditions for the net 𝑃 ↦ 𝑓𝜇(𝑃).  

Proposition 5. Assume that 𝑈, 𝑉 and 𝑊 are Banach spaces. A function 𝑓: Ω → 𝑈 satisfies the Cauchy 

criterion for μ-integrability (resp. Cauchy criterion for unconditional μ-integrability over a set 𝐴 ⊂ 𝛺 if and 

only if 𝑓 ∈ ℐ(𝐴, 𝜇, 𝑈) (resp. ℐ̃(𝐴, 𝜇, 𝑈)). 

Theorem 6. Assume that 𝑈, 𝑉 and 𝑊 are Banach spaces, 𝜇: Σ →  𝑉 an integrator and 𝜏: 𝑈 × 𝑉 → 𝑊 a 

tensor. The following statements are equivalent for a function 𝑓: Ω → 𝑈: 

1) 𝑓 is unconditionally μ-integrable over A ⊂ Ω. 

2) For any injection ϖ: Γ → A, the function γ ↦ f(ϖ(γ)) is η-integrable over Γ, where the integrator 

η: ϖ−1(Σ) → V is defined by η (ϖ−1(E)) = μ(E) for all E ∈ Σ.  

In such a case, one has ∫ 𝜏(𝑓, 𝜇)
𝐴

= ∫ 𝜏(𝑓 ∘ 𝜛, 𝜇)
𝜛−1(𝐴)

. 

Proof. Clearly, 2⇒ 1. To see 1 ⇒ 2, suppose 𝑓 ∈ ℐ̃(𝐴, 𝜇, 𝑈) and let 𝜀 > 0. Then there exists 𝑃0 ∈ Π̃(𝐴, 𝜇) 

such that ‖𝑓𝜇(𝑅) ‖
𝑊

< 𝜀  for every 𝑅 ∈ Π̃(𝐴, 𝜇), 𝑅 ∩ 𝑃0 = ∅. Let 𝜛: 𝛤 → 𝐴 be an injective mapping. We 

can choose 𝑄0 ∈ Π̃(𝛤, 𝜂) so that 𝜛(𝑄0) ≻ 𝑃0. Again, by injectivity of  , if 𝑄 ∈ Π̃(𝛤, 𝜂)  and 𝑄 ∩ 𝑄0 = ∅, 

then 𝜛(𝑄) ∩ 𝜛(𝑄0) = ∅ and thus 𝜛(𝑄) ∈ Π̃(𝐴, 𝜇) is disjoint from 𝑃0  and we have ‖(𝑓 ∘ 𝜛)𝜂(𝑄) ‖ =

‖𝑓𝜇(𝜛(𝑄)) ‖ < 𝜀. Hence, the function 𝛾 ↦ 𝑓(𝜛(𝛾)) is 𝜂-integrable over 𝛤. We have established that 1 ⇒ 

2.  

Let 𝜀 > 0 . Choose 𝑄1 ∈ Π̃(𝜛−1(𝐴)𝜂)  such that ‖∫ 𝜏(𝑓 ∘ 𝜛, 𝜂)
𝜛−1(𝐴)

− (𝑓 ∘ 𝜛)𝜂(𝑄1)‖ <
𝜀

3
.  Choose 

𝑃1 ∈ Π̃(𝐴, 𝜇)  such that 𝑃1 ≻ 𝜛(𝑄1)  and ‖∫ 𝜏(𝑓, 𝜇)
𝐴

− 𝑓𝜇(𝑃1)‖ <
𝜀

3
.  By injectivity, we can choose 

𝑄2 ∈ Π̃(𝜛−1(𝐴), 𝜂)  such that 𝜛(𝑄2) ≻ 𝑃1  and ‖∫ 𝜏(𝑓 ∘ 𝜛, 𝜂)
𝜛−1(𝐴)

− (𝑓 ∘ 𝜛)𝜂(𝑄2)‖ <
𝜀

3
.  Choose  

𝑃2 ∈ Π̃(𝐴, 𝜇) such that 𝑃2 ≻ 𝜛(𝑄2) and ‖∫ 𝜏(𝑓, 𝜇)
𝐴

− 𝑓𝜇(𝑃2)‖ <
𝜀

3
. Continuing in this way, we construct 

sequences 𝑛 ↦ 𝑃𝑛 and 𝑛 ↦ 𝑄𝑛 such that 𝜛(𝑄𝑛+1) ≻ 𝑃𝑛 ≻ 𝜛(𝑄2),  

 

‖∫ 𝜏(𝑓 ∘ 𝜛, 𝜂)
𝜛−1(𝐴)

− (𝑓 ∘ 𝜛)𝜂(𝑄𝑛)‖ <
𝜀

3
  and ‖∫ 𝜏(𝑓, 𝜇)

𝐴
− 𝑓𝜇(𝑃2)‖ <

𝜀

3
.  

 

Now we let 𝐻 = ⋃ 𝑄𝑛𝑛∈ℕ and define 𝜛′: 𝐻 → 𝐴  by 𝜛′(𝑡) = 𝜛(𝑡) . By our hypothesis, the function 

𝑡 ↦ 𝑓(𝜛′(𝑡)) is also 𝜇-integrable. On the other hand, we have 

 

‖∫ 𝜏(𝑓 ∘ 𝜛′, 𝜂)
𝜛−1(𝐴)

− (𝑓 ∘ 𝜛′)𝜂(𝑄𝑛)‖ <
𝜀

3
  and ‖∫ 𝜏(𝑓, 𝜇)

𝐴
− 𝑓𝜇(𝜛′(𝑄𝑛))‖ <

𝜀

3
.  

 

We notice that 

 

(𝑓 ∘ 𝜛′)𝜂(𝑄𝑛) = ∑ 𝑓(𝜛′(𝑡𝐼))𝜂(𝐼)𝐼∈𝑄𝑛
= ∑ 𝑓(𝜛′(𝑡𝐼))𝜇(𝜛′(𝐼))𝜛′(𝐼)∈𝜛′(𝑄𝑛) = 𝑓𝜇(𝜛′(𝑄𝑛)).  

 

By the uniqueness of limit, we have ∫ 𝜏(𝑓, 𝜇)
𝐴

= ∫ 𝜏(𝑓 ∘ 𝜛, 𝜂)
𝜛−1(𝐴)

 as to be shown. The proof is 

complete.  

Corollary 7. A function 𝑓: Ω → 𝑈 is unconditionally 𝜇-integrable over a set 𝐴 if and only if it is 

unconditionally 𝜇 -integrable over all subsets of 𝐴. 

 

Let 𝑈 and 𝑉 be normed spaces, Σ a semiring of subsets of a set 𝐴 ⊂ Ω. Given a function 𝑓: 𝐴 → 𝑈, and 
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𝑃0 ∈ Π(𝐴, 𝜇) , we consider ‖𝑓‖𝜇(𝑃) = ∑ ‖𝑓(𝑡𝐼)‖𝑈𝜇(𝐼) 𝐼∈𝑃 and 𝑢∗𝑓𝜇(𝑃) = ∑ 𝑢∗(𝑓(𝑡𝐼))𝜇(𝐼)𝐼∈𝑃 for every 𝑢∗ ∈

𝑈∗.  We then say that 𝑓: 𝐴 → 𝑈  is norm μ -integrable (resp. weakly μ -integrable) if 

∫ ‖𝑓‖𝑑𝜇
𝐴

≔ lim𝑃‖𝑓‖𝜇(𝑃) (resp. for every 𝑢∗ ∈ 𝑈∗, ∫ 𝑢∗𝑓𝑑𝜇
𝐴

≔ lim𝑃 𝑢∗𝑓𝜇(𝑃)) represents a scalar. 

We denote by 𝐼1(𝐴, 𝜇, 𝑈) (resp. 𝐼𝑤(𝐴, 𝜇, 𝑈)) the space of classes of norm (resp. weak) μ-integrable 

functions. It is immediately seen that 𝐼1(𝐴, 𝜇, 𝑈) ⊂ 𝐼𝑤(𝐴, 𝜇, 𝑈).  For example, if 𝜇  is a non-negative 

measure on a σ-algebra containing the Borel σ-algebra of a given set Ω, and 𝑈 a Banach space, then 

𝐿1(𝐴, 𝜇, 𝑈) ⊂ 𝐼1(𝐴, 𝜇, 𝑈). We also see that Pettis μ-integrable functions are weakly μ-integrable [2] .  

Clearly, a function 𝑓 is in 𝐼1(𝐴, 𝜇, 𝑈) if and only if the scalar function ‖𝑓‖: 𝐴 → ℝ is in 𝐼(𝐴, 𝜇, ℝ). More 

generally, for 0 < 𝑝 < ∞, we also define 𝐼𝑝(𝐴, 𝜇 , 𝑈) ≔ {𝑓: 𝐴 → 𝑈: ‖𝑓‖𝑝 ∈ 𝐼(𝐴, 𝜇 , ℝ)}.  

For example, it is easily seen that 𝐿𝑝(𝐴, 𝜇, 𝑈) ⊊ 𝐼𝑃(𝐴, 𝜇, 𝑈) for 0 < 𝑝 < ∞. As in Theorem 1, 𝐼𝑃(𝐴, 𝜇, 𝑈) 

is a Banach space whenever 𝑈 is complete. Moreover, if 1 < 𝑝, 𝑞 < ∞ are such that 1/𝑝 + 1/𝑞 = 1, then 

the Riesz Representation Theorem states that whenever the Banach space 𝑈∗ has the Radon-Nikodym 

property [2], then [𝐿𝑝(𝐴, 𝜇, 𝑈)]∗ ≅ 𝐿𝑞(𝐴, 𝜇, 𝑈∗). Such a restriction is not needed for the 𝐼𝑃(𝐴, 𝜇, 𝑈) spaces. 

Theorem 8.  Let 𝑈, 𝑉  and 𝑊  be Banach spaces, 𝜇: Σ →  𝑉 an integrator and 𝜏: 𝑈 × 𝑉 → 𝑊 . If 

1 < 𝑝, 𝑞 < ∞ are such that 1/𝑝 + 1/𝑞 = 1, then [𝐼𝑝(𝐴, Σ, 𝜇, 𝑈)]∗ ≅ 𝐼𝑞(𝐴, Σ, 𝜇, 𝑈∗). 

The reader is referred to [11] for the proof of the above theorem and more detailed presentation on 

results related to the Riesz Representation Theorem. 
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