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a b s t r a c t

The Okavango Delta is a large, remote, and ecologically significant wetland located in Botswana that receives a strong annual flood pulse. Although the
hydrology in flood pulsed systems is often theorized to drive fish population dynamics, in the Okavango Delta there are no monitoring or modeling
studies that quantify this complex ecological relationship. The objective of this work was to produce and analyze a mechanistic fish population model of
the Okavango Delta that is driven by the annual flood pulse in order to corroborate the theory that Delta fish populations are driven by the flood signal.
The model tracked age cohorts over time with density dependant recruitment, mortality, and vulnerability compo-nents. Global sensitivity analysis
identified the parameters that were the most important in determining the model outcome. Monte Carlo filtering truncated prior parameter probability
density functions and refined model uncertainty. One of the unique outcomes of this research was the identification of pol-ishing parameters, i.e. model
parameters that are essential in obtaining optimal model performance by matching output variability, though they are not important in changing the
magnitude of model results. The flood coefficient (a scaling factor that describes how recruitment changes with the magnitude of the flood) was shown to
be a polishing parameter, providing quantitative evidence that floods are a driver of fish population dynamics in the Delta. This linkage between the flood
pulse and fish population dynamics provides quantitative information that is necessary for making informed decisions regarding the management of
hydrologic and ecological resources in the Okavango Delta.
. Introduction

The flood pulse concept (Junk et al., 1989) (FPC) is a well known
ypothesis that describes an ecological response to flood pulsed
ydrology (Fig. 1). In the FPC nutrient availability is linked to the

nundation of the floodplain. On an incoming flood, as the water
nundates the floodplain, the transition zone where the aquatic
nvironment meets the terrestrial environment has high inputs of
utrients from terrestrial sources such as vegetation and detritus.
his leads to high primary productivity in this transition zone. The
nputs of nutrients and resulting high primary productivity in the
ransitional zone iterate with each flood and it is hypothesized that

auna can adapt to take advantage of the increased food availabil-
ty (Junk et al., 1989). The effect of the FPC is often cited as being

major driver for fish population dynamics in systems that are

Abbreviations: MC, Monte Carlo; GSA/UA, global sensitivity and uncertainty
nalysis; FPC, flood pulse concept; ceff, coefficient of efficiency; CPUE, catch per
nit effort; ORI, Okavango Research Institute; DW, dry weight.
regularly inundated (Junk et al., 1989). This theory was originally
intended for tropical regions but has been applied to temperate
areas as well (Tockner et al., 2000). In general, there are relatively
few field studies that quantify this relationship (Bailly et al., 2008;
Zeug and Winemiller, 2008) and even fewer modeling attempts to
simulate the response (Deangelis et al., 1997; Gaff et al., 2004; King
et al., 2003; Merona and Gascuel, 1993).

This study tested the FPC in the Okavango Delta, a large inland
delta located in an arid climate that experiences an annual flood
pulse from its upstream watershed (Fig. 2). No quantitative studies
have been conducted to specifically show how fish respond to the
flood pulse in the Okavango Delta. However, there have been stud-
ies in the Okavango that show that the annual flood pulse produces
a response in other ecological aspects (Hoberg et al., 2002; Merron,
1991). Hoberg et al. (2002) provided a food web conceptual model
for ecological responses to the annual flood pulse in the Delta.
They measured a ‘first flush’ effect at the onset of the flood which
results in a release of nutrients into the water column. During the

rising flood there was a burst in nutrients, primary production,
and phytoplankton. Concentrations of nitrogen rose from 1.5 to
3.5 mg L−1 and phosphorus rose from 125 to 450 �g L−1. Primary
production reached its peak at 300 �g C L−1 d−1 and maximum

dx.doi.org/10.1016/j.ecolmodel.2011.12.022
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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ig. 1. A diagram of the flood pulse concept, the conceptual model driving this
esearch.

hlorophyll a values were 24 �g chlorophyll a L−1 (Hoberg et al.,
002). The authors went on to state that resting zooplankton eggs
atched when they were submerged by the floodwater and fed
n the abundant phytoplankton and other food sources provided
y the burst in primary production. Peak concentrations of zoo-
lankton went from 0.1 to 10 mg dry weight per liter (DW L−1)

−1
uring the rise of the flood and reached up to 90 mg DW L at
he extreme near-shore edges. In the same study a qualitative
nalysis of the fishes’ response to the flood was also conducted
Hoberg et al., 2002). The tilapiine species Oreochromis andersonii,

Fig. 2. Site location. The Okavango Delta, with fish sampling sites marked.
Tilapia rendalli, and T. sparrmanii were observed following the
rising flood into the study area. Juveniles of the same species were
also seen with an increasing frequency just after the peak of the
flood. Gut analysis of the fishes showed that smaller fish fed on
more zooplankton indicating the importance of the ‘first flush’
effect for the juveniles. At the end of the flood season very few fry
were observed with the conclusion that they migrated out of the
area before the connection with the main river system was lost.

In another study, Merron (1991) conceptually related spawning
period to the flood pulse in the Okavango Delta. He proposed that
the higher the magnitude of the annual flood, the longer the water
is retained on the floodplain, leading to a longer spawning period
and greater overall production of fish. Additionally, Mosepele et al.
(2009) proposed that survivability for smaller fishes is increased in
dense floodplain vegetation types because the vegetation provides
protection from predators.

Research investigating the influence of the flood pulse on fish
populations throughout the world has been conducted with a vari-
ety of results (Deangelis et al., 1997; Gaff et al., 2004; King et al.,
2003; Merona and Gascuel, 1993). Much of this research showed
that these relationships are complex and difficult to quantify. King
et al. (2003) investigated floodplain usage by fish in the Mur-
ray Darling Basin, Australia where there is annual inundation via
snow melt and flood pulse has been theorized to be a major driver
for fish populations. Through sampling, these authors noted that
floodplain utilization by fish was not as pronounced as expected.
They proposed a more complex system and suggested a model
based on optimum conditions for floodplain utilization including:
temperature, flood pulse predictability, the rate of change in the
hydrograph, and inundation duration and area. However, the flood
pulse in the Murray Darling Basin may be less predictable than in
the Okavango Delta implying that the fish in the Murray Darling
may be more opportunistic and less consistent in their behavior.

Merona and Gascuel (1993) showed a statistical relationship
between commercial fish catch and the annual flood in the Amazo-
nian floodplain. Among their results they found three relationships
of interest to this study. (1) There was a positive correlation
between catch and the flood peak three years prior, which they
speculated to be associated with recruitment. (2) There was an
association between catch and the water level during its rise 2 years
prior that was possibly associated with competition. (3) There was
an association between catch and severe low water stage 2 years
prior that likely due to increased mortality. They were able to pro-
duce a statistical model with three variables that explained more
than 83% of the variability in the annual fish abundance. Similar to
the Okavango, this system experiences a regular and predictable
flood pulse.

Deangelis et al. (1997) constructed a mechanistic model, Across
Trophic Level System Simulation Landscape Fish model (ALFISH),
that spatially predicts fish abundance based on the flood pulse
in the Everglades. This fish model was built on top of a spatially
explicit hydrologic model that simulates the annual flood pulse.
The model simulates seasonal dynamics in production due to the
flooding as well as trophic interactions. As the flood rises, modeled
fish move into the floodplain in response to increased food avail-
ability. Then, as the flood recedes, modeled fish move to find refugia
and mortality increases as a result of crowding and predation. Four
types of mortality were simulated: background mortality, density
dependent mortality, predation by the large fish, and failure to
find refugia. Gaff et al. (2004) critiqued ALFISH and concluded that
inundation area is not the only driver for fish populations and
that other parameters may be just as important. They stated that

the best model fit that ALFISH was able achieve is a coefficient of
determination (R2) of 0.88 for water depth and 0.35 for fish density
with an inverse relationship between water depth and fish density.
However, an R2 of 0.35 between fish density and water depth
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For the purposes of this work, these three fish species were used
eflected empirical data showing that the hydrology only accounts
or 20–40% of the variability in the sampled fish population density.

Environmental Flows are criteria that describe the degree to
hich a natural hydrologic regime must be maintained in order

o preserve valuable features of an ecosystem (King et al., 1999;
harme and King, 1998; Tharme, 2003). Environmental Flows are
eing developed for the Okavango Delta and a special report
as published specifically addressing flows for fish communities

Mosepele, 2009). A major recommendation in the report was for
he development of a quantitative relationship between the flood
ulse and fish population dynamics in the Delta so that managers
an understand feedbacks between hydrology and fish populations.
ish population models are often used to track populations and pre-
ict responses to management decisions in other locations (Rogers
t al., 2010; Walters and Martell, 2004; Walters et al., 2008). A fish
opulation model has yet to be developed for the Okavango Delta.

Thus, there is a stated management desire for a model that links
he flood pulse to fish population dynamics (Mosepele, 2009), quan-
itative data shows that various aspects of the ecology of the Delta
ther than fish are driven by the flood pulse (Hoberg et al., 2002;
erron, 1991), and there are qualitative indications that fish pop-

lation dynamics are affected by the flood pulse (Merron, 1991;
osepele et al., 2009). Additionally, our summary of the literature

emonstrated that there are only a few studies that investigated
sh recruitment responses to flood pulsed wetlands and even fewer
tudies that use models to simulate this relationship. These stud-
es include field research (Bailly et al., 2008; Zeug and Winemiller,
008; King et al., 2003), statistical models (Merona and Gascuel,
993), and food web based mechanistic models (Deangelis et al.,
997; Gaff et al., 2004). A benefit of mechanistic models over sta-
istical models is that they can be used to investigate functional
elationships. However, over-parameterization, especially in data
oor areas, is an important consideration in constructing mecha-
istic models. In the case of the Okavango, there was not sufficient
ata to simulate a food web based fish recruitment response to the
ood pulse as was done with Deangelis et al. (1997). The objec-
ive of this work was to produce a novel simplified mechanistic
sh population model of the Okavango Delta that is driven by the
nnual flood pulse. In addition to this we conducted a global sensi-
ivity and uncertainty analysis to identify the most important parts
f the system, simplify the model, and quantify the reliability of
he model. We then applied Monte Carlo (MC) filtering to truncate
rior parameter probability density functions (PDF), a tool that was
specially useful in this data poor area where setting these PDF’s
an be problematic. The model simulates fish population response
o the size of the maximum annual flood. Because of their commer-
ial importance, tilapia and in particular O. andersonii, T. rendalli,
nd Oreochromis macrochir were used as indicator species.

We used state-of-the-art global sensitivity and uncertainty anal-
sis (GSA/UA) in the development and assessment of the model.
SA was used to identify unimportant parameters that could be
et to constants without drastically affecting the outputs, thus sim-
lifying the model (Chu-Agor et al., 2011; Fox et al., 2010; Jawitz
t al., 2008; Muñoz-Carpena et al., 2007, 2010). One of the largest
ritiques of GSA/UA is the rather arbitrary methods for setting the
rior probability densities (PDF’s). Therefore, secondly, we used
onte Carlo (MC) filtering (Saltelli et al., 2008) to objectively rede-

ne the prior PDF’s within their predefined defined physical bounds
ased on realistic model results and thereby refined model uncer-
ainty.

The model was inverse calibrated to objectively investigate
he range of best fit model parameter sets. Traditionally, the
oal of inverse optimization techniques is to find the optimal

et of parameters for a given model to match some measured
ata (Mertens et al., 2006). Beven and Binley (1992) and Beven
1993) commented on the limitations of the concept of an optimal
29

parameter set in complex environmental systems. Beven and Freer
(2001) coined the term ‘equifinality’ to refer to the fact that there
may be “many different parameter sets within a chosen model
structure that may be behavioral or acceptable in reproducing the
observed behavior of that system.” As a result, there may be no
way to distinguish between these equally acceptable parameter
sets. Because of this issue of equifinality in complex ecological
models we did not seek an optimal parameter set, but instead
looked for evidence of the flood as a driver for fish population
dynamics despite signs of equifinality.

2. Methods

2.1. Fish data

Daily commercial catch data were available from January 1996
to December 2005. All available data were used in this analysis.
Fish were caught in gillnets and the daily catch per unit effort
(CPUE) was recorded. The CPUE was calculated as the number of
fish caught per gillnet per day. Because a relatively standard gear
was used throughout the time series, we felt that CPUE could be
used as an indicator of fish density using the assumption that a
constant fraction of the stock density was captured per gillnet day
(q) (Fielder, 1992; Hansson and Rudstam, 1995; Hodgkiss and Man,
1977; Borgstrom, 1992). In the model CPUE was calculated only for
the lowest flows to protect against changes in q across seasons.

We produced an annual time step model. The fish data that
were available only include fish counts. Since age, weight, and
length data, which are necessary for simulating monthly spawn-
ing dynamics, were not collected an annual model was deemed to
be the most appropriate. This annual time step is also appropriate
because we did not seek to simulate seasonal dynamics. Instead we
sought to understand if fish populations are influenced by the size of
the annual flood. We standardized fish abundance in the model on
a per area basis for comparison to the fisheries data from the Oka-
vango Delta. And so, for the purposes of this model, the objective
function was the coefficient of efficiency (Nash and Sutcliffe, 1970)
between the modeled maximum annual density and the measured
maximum annual CPUE.

The coefficient of efficiency (ceff) is a dimensionless index fre-
quently used to assess the goodness of fit of hydrologic models (Eq.
(1)) (Nash and Sutcliffe, 1970) where Oi is measured or observed
data, Pi is modeled or predicted data, and Ō is the mean of the
observed data. It represents one minus the mean square error
divided by the variance in the observed data. The ceff provides dif-
ferent information from the coefficient of determination (R2). An R2

specifies the percent of the variance in the observed data that the
modeled data represents. The ceff specifies one minus the percent
of the variance in the observed data that is represented in the mean
square error (Ritter et al., submitted for publication).

E = 1.0 −
∑N

i=1(Oi − Pi)
2

∑N
i=1(Oi − Ō)

2
(1)

The fish that were caught in commercial catches were not
recorded to the level of species. Instead, tilapias (of the family
Chiclidae) were lumped as a family. According to Mosepele et al.
(2003), Cichlidae is the principal family of fish in both subsistence
and commercial gillnet fisheries. The three species with the high-
est indices of relative importance for the commercial gillnet fishery
are all tilapia and include in order of importance: (1) O. ander-
sonii, (2) T. rendalli, and (3) O. macrochir (Mosepele et al., 2003).
as a representative species to base parameters such as maximum
age and growth functions, with particular importance placed on O.
andersonii.
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.2. Model structure

We developed an age-structured, fish population model driven
y the flood pulse in the Okavango Delta. The model structure used
he Beverton and Holt (1957) stock-recruitment relationship (Eq.
2)) to estimate recruitment, where Rt [Fish yr−1] is the number
f recruits per year, ˛ and ˇ are Beverton and Holt parameters
1957), Nt,n [Fish] is the number of fish per age class, and e is the
umber of eggs produced per year per fish. ˛/ˇ describes the max-

mum recruitment at a high stock and ˛ describes the maximum
ecruitment/stock at a low stock size.

t = ˛
∑nmax

n=0 Nt,ne

1 + ˇ
∑nmax

n=0 Nt,ne
(2)

Three constants were required to parameterize the Beverton
nd Holt equation: one point along the Beverton and Holt curve
here recruitment is constant (Nt,n), survival from natural mortal-

ty (S) [yr−1], and the Goodyear compensation ratio (CR) (Goodyear,
977). The steady state condition of the Beverton and Holt equation

s given as Eq. (3):
nmax

n=0
(Nt,n) =

∑nmax

n=0
(Nt,n)S + Rt (3)

Thus, Rt (constant recruitment, used for calibration of the num-
er of fish in the population) can easily be found by Eq. (4):

t = (1 − S)
∑nmax

n=maturity
(Nt,n) (4)

The CR represents the maximum compensatory increase in juve-
ile survival as the stock size is decreased from unfished to very

ow levels. Parameters ˛ and ˇ can be derived from CR from the
teady state equation (Eq. 5) at low spawner abundance. The juve-
ile survival ratio (Rt/

∑nmax
n=0 (Nt−1,n)) is represented by ˛ (Walters

nd Martell, 2004) (Eq. (5)) such that:

t = (CR)
Rt∑nmax

n=0 (Nt−1,n)
(5)

nd ˇ is the density dependent parameter which can be derived
rom (Walters and Martell, 2004) (Eq. (6)):

t = CR − 1∑nmax
n=0 (Nt−1,n)

(6)

The fish population response to the flood was simulated through
ecruitment, as floods would be expected to increase both the
vailability of refuge habitat and food resources (Junk et al., 1989;
ayley, 1991; Tockner et al., 2000; Agostinho et al., 2004; Zeug and
inemiller, 2008). In order to relate recruitment to the flood, a
odification was made to the Beverton and Holt density depen-

ant recruitment relationship which assumed that the number of
ecruits was positively proportional to the annual maximum inflow
Eq. (7)). In this equation, Fa is the maximum inflow in a given
ear [M m3 yr−1], F̄ is the average of the annual maximum inflows
M m3 yr−1], and c is a scaling flood coefficient. This alteration did
ot change the actual fish population, but did change the asymptote
nd the steepness of the stock recruit equation (maximum recruit-
ent possible). The result was a change in the carrying capacity

f recruits and rate of recovery between high and low flood years
Fig. 3).

nmax

n=0
(N(t−1,n)) =

∑nmax

n=0
(N(t−1,n)) + (Fa − F̄)c (7)

In each time step, after recruitment is calculated, mortality was
alculated. Each age experiences mortality according to:
t,n = Nt,n,n−1exp−Z(�t) (8)

here Z represents instantaneous total mortality [yr−1] (Beverton
nd Holt, 1957). The estimate of the total number of fishers in the
Fig. 3. A demonstration of the response in recruitment as a result of the change
in annual maximum flood. The rate of recovery and the carrying capacity increases
during smaller floods. Flood1 > Flood2 > Flood3.

Okavango Delta in the 1990s was approximately 5000 with 300 of
those being gillnet fishers, and about 40 total full-time commercial
fishers (Kgathi et al., 2005; Mosepele, 2001). Because of the small
scale of commercial and subsistence fishing in the Okavango Delta
and the low efficiency of the gear, fishing pressure in the Delta is
fairly light (Mosepele and Kolding, 2003; Kgathi et al., 2005). Thus,
for the purposes of this research mortality from fishing was consid-
ered negligible. The exponential function results in an exponential
decrease in abundance with age.

Various studies point to an allometric relationship between
body weight and mortality (Lorenzen, 1996; Mcgurk, 1986;
Peterson and Wroblewski, 1984). de Graaf et al. (2005) showed
Lorenzen’s (1996) allometric weight/mortality relationship can
also be related to body length through the von Bertalanffy (1957)
length/weight relationship where Mu is the mortality at unit length,
L is body length in cm, and a and b are coefficients (Eq. (9)).

M = Mu˛−0.3L0.3b (9)

Length at a given age was calculated according to the von Berta-
lanffy equation, where Ln is the length at age n and k is the growth
coefficient (yr−1), and L∞ is the asymptotic length (Eq. (10)).

Ln = L∞(1 − exp−k(n−no)) (10)

Not all fish are equally vulnerable to catch because of the size
selective fishing gear. The vulnerability to catch of each age class
was computed using a dome shaped double logistic function (Allen
et al., 2009) (Fig. 4):

Vn = 1

1+exp(−TL − Llow)/SDlow
− 1

1+exp(−TL − Lhigh)/SDhigh
(11)

where Vn is the vulnerability (unitless) at age n, TL is the average
length (cm) at age n, Llow is the lower length (cm) at 50% vulner-
ability, SDlow is the standard deviation of the distribution for Llow,
Lhigh is the upper length (cm) at 50% vulnerability, and SDhigh is the
standard deviation of the distribution for Lhigh.

The measured maximum annual CPUE generally occurred at the
annual low flood when the fish were most concentrated in a smaller
area. In order to get a similar measure of density, the vulnerable
fish were divided by the minimum area of inundation in the Pan-
handle, where the fish were caught. This measure was considered
the modeled annual maximum CPUE. For each year, the modeled
annual maximum CPUE was compared to the measured annual
maximum CPUE using the ceff (Nash and Sutcliffe, 1970) which

was the objective function of the model.

In order to compute CPUE from the modeled data, the fish abun-
dance had to be expressed as density (fish km−2) and the area of
inundation must be known. This was done using in the Okavango



31

Fig. 4. An example of the dome shaped double logistic curve (Allen et al., 2009)
for catch vulnerability. Llow = 2, SDlow = 2, Lhigh = 45, SDhigh = 10. Histogram data from
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Table 1
List of parameters and initial distributions.

Abbreviation Parameter Distribution

1 Z Natural Mortality U(0.67, 1.39)
2 k Growth coefficient U(0.25, 1.0)
3 Mu Mortality per unit weight U(3, 8)
4 a Weight/length parameter U(0.004, 0.026)
5 b Weight/length parameter U(2.911, 3.424)
6 L∞ Asymptotic length U(40, 53)
7 CR Compensation ratio U(3, 30)
8 Llow Lower length at 50% vulnerability U(1, 3)
9 SDlow Standard deviation of Llow U(23, 25)

10 Lhigh Upper length at 50% vulnerability U(28,60)
11 SDhigh Standard deviation of Lhigh U(10, 30)
12 Maturity Maturity N(4.25, 0.5)
osepele (2009). (a) Shows the dome shaped curve and (b) shows the curve
pproaching a logistic shape. Both shapes are possible within the bounds of the
efined PDF’s.

esearch Institute (ORI) hydrologic model of the Delta (Wolski et al.,
006). The ORI model is a linked reservoir model that simulates
ooding extents in the Delta. One of the areas in the model explic-

tly represents the Panhandle, where the fish data were collected
Fig. 2). The Panhandle is not the area that was the focus for model
alibration. This area is also more confined and permanently inun-
ated than the lower Delta which experiences greater dynamics in

nundation area. Because of these reasons, in each year the total
odeled vulnerable fish population was divided by the average

cross years of the minimum flooding extents simulated in the Pan-
andle. This produced an overall better model fit than dividing by
he annual minimum flooding extents.

.3. Model optimization

Any parameter into the model has an amount of uncertainty
ssociated with it. To describe that uncertainty PDF’s were devel-
ped for each parameter based on literature values and data when
vailable. The model was run iteratively sampling parameters from
he PDF’s using the extended Fourier amplitude sensitivity test
FAST) sampling routine (Cukier et al., 1978; Koda et al., 1979;
altelli et al., 1999) with SimLab software (SimLab, 2011). This sam-
ling routine is an unbiased method that samples throughout the
arametric space and is able to highlight the variety of parameter
ets that result in good fit model simulations. Sensitive parameters
ere identified and uncertainty was measured. Monte Carlo (MC)
ltering (Saltelli et al., 2008) was used to filter out unacceptable
odel simulations as defined by the ceff and prior distributions
ere refined based on the parameters that generated the accept-

ble simulations. Insensitive parameters were set to constants. The
SA was rerun with the new posterior distributions and varying
nly the important parameters.

.3.1. Global sensitivity and uncertainty analysis
Global sensitivity and uncertainty analysis (GSA/UA) was used

o apportion the variation of model outputs onto the model param-
ters based on input PDF’s. The extended FAST GSA/UA method
Cukier et al., 1978; Koda et al., 1979) uses Fourier analysis to
ecompose the variance of a set of model outputs into first order
ariances for each parameter. For this method, the model is exe-
uted C ≈ Nk times, where k is the number of parameters and N

s a number that ranges between 100s and 1000s (Saltelli et al.,
999). The extended FAST technique (Saltelli et al., 1999) allows
or the additional computation of higher levels of variance which
escribe the interactions between the parameters (Eq. (12)). Here,
13 e Eggs yr−1 U(350, 1600)
14 c Flood coefficient U(5, 25)

V(Y) describes the total variance of a single parameter including
first and higher levels of variance.

V(Y) =
∑

i

Vi +
∑

i/i

Vij +
∑

i/i/l

Vijl + . . . + V123...k (12)

FAST also defines Si as an index of global sensitivity. Si is the ratio
of the variance that is ascribed to a single parameter divided by the
total model variance. In a model where there are no interactions,
the sum of the Si’s across all of the parameters is equal to one. In
models where there are interactions this sum is greater than one.
Note that parameters used in this method must be independent
and are assumed so for this work.

2.3.2. Monte Carlo filtering
Sampling throughout the parametric space, as the FAST method

does, produced many unrealistic and nonsensical outputs. Using
the results of the FAST GSA/UA, MC filtering (Saltelli et al., 2008)
was used to filter out those unrealistic outputs or non-behavioral
results and redefine the prior parameter distributions based on the
realistic outputs. MC filtering divided the outputs into ‘behavioral’
(B) and ‘non-behavioral’ (B̄) based on a threshold that is defined by
the user. The B or B̄ status was mapped back to the parameters and
two subsets of each model parameter, Xt, were defined as Xt|B or
Xt |B̄ based on their behavioral/non-behavioral status. The behav-
ioral subset contained n elements and the non-behavioral subset
contained n̄ elements such that n + n̄ = N, where N is the num-
ber of model simulations. The PDF’s f(Xt|B) and f (Xt |B̄) were then
assigned. The two-sided Smirnov test was performed to check the
significance of the difference between the two distributions f(Xt|B)
and f (Xt |B̄). In the Smirnov test the test statistic dn,n̄ is defined by
Eq. (13):

dn,n̄(Xi) = sup ||Fn(Xi|B) − Fn̄(Xt |B̄)|| (13)

The null hypothesis for this test is f (Xt |B) = f (Xt |B̄). That is, the
null hypothesis tests if the distribution of the parameters that cre-
ated behavioral outputs was the same as the distribution of the
parameters that created non-behavioral outputs. The null hypoth-
esis was rejected at a significance level, ˛. A small ˛ for a particular
parameter indicated a high importance of that parameter for driv-
ing the behavior of the model (Saltelli et al., 2008). If the null
hypothesis was rejected, the prior distribution was reassigned
based on f(Xt|B).

2.3.3. Probability density functions

Inherent to these methods is the importance of the selection of

the input PDF’s. Model parameters and their PDF’s are shown in
Table 1. When the data for the parameters shows no apparent dis-
tribution such as normal or triangular, the PDF can be set to uniform
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Table 2
Natural mortality (M) and growth coefficients (k) for selected tilapiine species.

Species M k Location Reference

Oreochromis andersonii 1.39 1.0 Okavango Delta, Botswana Mosepele and Nengu (2003)
O. andersonii 0.67 0.25 Okavango Delta, Botswana Booth et al. (1995)
Oreochromis macrochir 1.5 1.0 Okavango Delta, Botswana Mosepele and Nengu (2003)
Oreochromis macrochir 0.95 0.42 Okavango Delta, Botswana Booth and Merron (1996)
T. rendalli 1.22 0.78 Okavango Delta, Botswana Mosepele and Nengu (2003)
Serranochromis angusticeps 1.46 1.0 Okavango Delta, Botswana Mosepele and Nengu (2003)
Serranochromis robustus 1.21 0.83 Okavango Delta, Botswana Mosepele and Nengu (2003)
Oreochromis niloticus 0.254 Lake Victoria, Kenya Getabu (1992)
Haplochromis anaphyrmus 1.45 0.671 Lake Malawi, Mozambique Tweddle and Turner (1977)
Haplochromis molto 0.92 0.55 Lake Malawi, Mozambique Tweddle and Turner (1977)
Lethrinops longipinnus 1.69 0.571 Lake Malawi, Mozambique Tweddle and Turner (1977)
Lethrinops parvidens 1.20 0.487 Lake Malawi, Mozambique Tweddle and Turner (1977)
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Tilapia esculenta 1.75 0.28

Muñoz-Carpena et al., 2007). The uniform distribution allows for
qual probability of selection across the defined range.

The prior distribution for mortality (M) was defined based on
iterature values (Table 2). Values of M for tilapiine species were
ompiled from a number of studies including the three indicator
pecies in the Okavango Delta. These values range between 0.67
nd 1.39 for the indicator fishes in the Okavango Delta. Based on
hese data, the PDF for Z was set to Uniform (0.67, 1.39).

The allometric relationship between mortality and fish body
ength (de Graaf et al., 2005) calculates a decreasing rate of mortal-
ty with increasing body length. The four parameters required for
alculating mortality according to the allometric relationship are
he mortality at unit length (Mu) the von Bertalanffy parameters ˛
nd ˇ parameters, and asymptotic length (cm), L∞. Mu should be
stimated for each species (de Graaf et al., 2005; Lorenzen, 2001).
e Graaf et al. (2005) used values of Mu ranging between 1 and 4.5
or species with survival rates between 50 and 80%. Based on the
alues of Z chosen for the PDF, survivability for these fishes ranges
etween 25% and 50%. The PDF for Mu was set so that ranges similar
o the values that were defined for Z through the literature could be
chieved. Based on this analysis the PDF for Mu was set to Uniform
3, 8)

Mosepele and Nengu (2003) provide values for the weight [g]
ength [cm] parameters ˛ and ˇ for the three indicator species spe-
ific to the Okavango Delta. For O. andersonii ˛ is given as 0.004
nd ˇ is 3.424, for O. macrochir ˛ is 0.014 and ˇ is 3.106, and for T.
endalli ˛ is 0.026 and ˇ is 2.911. Based on Mosepele and Nengu’s
2003) ranges for the von Bertalanffy parameters, PDF’s for ˛ and ˇ
ere established: ˛ Uniform (0.004, 0.026) and ˇ Uniform (2.911,

.424).
Mosepele and Nengu (2003) also calculated L∞ for the three indi-

ator species in the Okavango Delta. L∞ for O. andersonii was found
o be 53 cm, for T. rendalli it was 47 cm, and for O. macrochir it was
0 cm. From these values, the PDF for L∞ was set to Uniform (40,
3).

A number of studies in southern Africa and the Okavango Delta
nvestigate the growth coefficient (k) for various tilapiine species
ncluding the three indicator species used in this study (Table 2). In
hese studies, k varies from 0.25 to 1.0 from. Based on these data,
he PDF for k was set to Uniform (0.25, 1.0).

The Goodyear compensation ratio (Goodyear, 1977) describes
he rate at which juvenile survival changes following a depletion
n stock. High values of CR allow juvenile survival to increase
ubstantially as the stock declines due to fishing, resulting in
igh compensation. According to Walters et al. (2008), when

ecruitment compensation is not especially strong the CR is less
han 20. Walters et al. (2007) state that long lived benthic species
ikely have CR’s in the range of 10–50. In Myers et al.’s (1999) meta-
nalysis of a variety of fish (mostly pelagic species) values for CR
Lake Victoria, Kenya Garrod (1963)

ranged from 1.4 to 123.5 with an average of 18.6. A meta-analysis
of stock-recruitment data by Goodwin et al. (2006) showed CR is in
the range of 5–100. And Goodwin et al.’s (2006) analysis showed
that values for CR in perciformes varied between 3 and 50. Based
on these analyses, the PDF for CR was set to Uniform (3, 30).

The vulnerability catch curve (Eq. (11)) was parameterized from
inspection of a smaller dataset of commercial catch from the Oka-
vango Delta where fish length was available (Mosepele, 2009). A
histogram of caught fish per length was produced and a corre-
sponding vulnerability relationship was developed with PDF’s for
each of the parameters. The PDF’s for the lengths and standard devi-
ation at the upper end of the curve were set to include a wider and
higher distribution to account for the mortality that is occurring and
also to test for a logistic vulnerability shape versus a dome shape.
Based on inspection, the PDF’s were set as follows: Llow is Uniform
(23, 25), SDlow is Uniform (1, 3), Lhigh is Uniform (28, 60), and SDhigh
is Uniform (10, 30).

The model calculates recruitment per time step based on the
number of mature fish in that year. Several studies have investi-
gated the age at which cichlids become mature in southern Africa.
Dudley (1974) measured the total length and sexual maturity of O.
andersonii in the Kafue floodplains. He found that that during the
years of his study, no fish under 26 cm were mature, three out of
64 fish from 26 to 29 cm were mature, and more than 30% of larger
males and 40% of larger females were immature. Dudley (1974)
also aged the fish with annual ring formations. He concluded that
O. andersonii usually spawn after the age of four and very rarely
under the age of three. Similarly, Van der Waal (1976) found that
in the Zambezi River the minimum size for sexual maturity in O.
andersonii was 25–27 cm. Hay et al. (2000) also measured the min-
imum size of for sexual maturity in O. andersonii in the Okavango
River Namibia which they found to be 13 cm for males and 26 cm
for females. Based on these literature values, with emphasis on the
ring formation as better measure of age than length, and a PDF for
age a sexual maturity was set to Normal (4.25, 0.5).

Fecundity refers to the number of eggs hatched per brood.
According to Mortimer (1960) O. andersonii, between 17 and 25 cm
in length, laid 349–567 eggs in ponds. Additionally, Chandrasoma
and Desilva (1981) found intraovarian egg counts in T. rendalli
ranged between 760 and 6160 in a lake in Sri Lanka. And Marshall
(1979) found that O. macrochir can produce 1000–5000 eggs within
their ovaries and may mouthbrood up to 800 eggs in Lake Mcil-
waine, Zimbabwe. Several sources state that these indicator species
may lay more than one brood per season. Skelton (1993) stated
that T. rendalli and O. andersonii both raised several broods each

summer. Naesje et al. (2004) described that T. rendalli may lay sev-
eral broods each season in the Kwando River, Namibia. Mortimer
(1960) examined O. andersonii for physiological indications of hav-
ing multiple broods per season. This study did not find physiological
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defined as non-behavioral. Using this threshold, of the 13,902 runs,
133 were shown to be behavioral. The value of 0.50 was strategi-
cally chosen to optimize the solutions that fell into the behavioral
ig. 5. The best fit model simulation for the initial inverse optimization. Coefficient
f efficiency equals 0.64.

ndications of multiple broods. However, the same study also
bserved two instances in ponds where one breeding pair spawned
wice in one season. According to these data the PDF for the number
f eggs per fish per year (e) was set to Uniform (350, 1600).

The flood coefficient (c) is a scaling factor that describes how
ecruitment changes with the magnitude of the flood (Eq. (7)).
here were no literature to support values for this coefficient and
his research was the first investigation into the quantitative effects
f the flood on fish populations in the Okavango Delta. A trial and
rror investigation into the appropriate ranges for this coefficient
as conducted prior to the GSA to get a sense of the values that
ould drive the model into a behavioral fit. Values for this coeffi-

ient ranging between 5 and 25 created acceptable model outputs.
herefore, the PDF for c was set to Uniform (5, 25). Later MC filtering
s used to redefine and truncate this prior distribution. This is shown
o be a particularly valuable tool when physical data regarding the
arameter is lacking.

. Results

With 14 parameters, the model was run 13,902 times for the
SA/UA using the FAST Monte Carlo style sampling. From these
odel runs, the model achieved a maximum ceff of 0.64 (Fig. 5)
hen comparing annual measured and modeled CPUE. However,

chieving the best model fit was not the primary goal of this exer-
ise. We sought also to analyze the results and the functional
mportance of the flood pulse to corroborate existing conceptual
heories that the flood pulse drives fish population dynamics. This
as done through GSA/UA and MC filtering.

.1. Global sensitivity analysis

According to the FAST GSA results (Fig. 6), the most important
actors in this model in order of importance, were: the growth coef-
cient (k), mortality at unit weight (Mu), and the upper length at
0% vulnerability (Lhigh). These were also highly interactive param-
ters (Fig. 7). Parameters that contributed less than 1% of the total
odel sensitivity included: maturity, e, and SDlow, (Fig. 7). These

hree unimportant parameters were set to constants in the next
ound of MC filtering.

The flood coefficient (c), which determines the relationship that

ow has on recruitment, was not one of the most sensitive param-
ters. However, a scatter plot that compares c to the objective
unction (ceff) shows that the best model fit converged at a c of
pproximately 14 (Fig. 8a). At a c of 14, the number of recruits
Fig. 6. First order sensitivity for the coefficient of efficiency of the modeled fish
density compared to the measured catch per unit effort (CPUE) from the first inverse
optimization.

per year varied between 6100 and 10,800, almost doubling their
numbers between low and high flood years (Fig. 9) and adding
significant variability in the inter-annual population. This was not
the case for the other parameters (except for k), where there was
generally a high degree of equifinality and the model was able to
achieve a good fit using parameter values ranging throughout their
defined PDF’s (Fig. 8c–f). All of the parameters besides c are related
to the baseline size and/or biomass of the population. The flood
coefficient (c) is the one parameter that is responsible for introduc-
ing inter-annual variability in the population dynamics. Without c,
the fish population density would not be dynamic and the model
would only be able to simulate a static population between all years
divided by the annual flood size.

3.2. Monte Carlo filtering

Through MC filtering, all of the outputs were mapped to their
corresponding parameters so that the parameters that created the
best fit outputs could be better understood. A threshold of a ceff
of 0.50 was set and any model output greater than or equal to
0.50 was defined as behavioral while any output less than 0.50 was
Fig. 7. First and higher order sensitivities for coefficient of efficiency of modeled
fish density compared to measured CPUE from first inverse optimization.
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F ating behavioral outputs. Note that the flood coefficient converges toward a single value
i ulations with a ceff > 0 are shown.
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ig. 8. (a–f) Scatter plots of values for the flood coefficient, k, Mu , Lhigh , a, and b cre
n the highest values for the coefficient of efficiency (best fit model runs). Only sim

ategory while at the same time ensured that there were enough
alues in the behavioral range to employ the two sided Smirnov
est. The two sided Smirnov test showed that of the 11 important
arameters, 5 had distributions where the behavioral parameters
ere significantly different from the non-behavioral parameters:

high, Mu, k, L∞, and c. When the behavioral parameter distributions
ere shown to be significantly different from the non-behavioral
arameter distributions, new PDF’s were assigned to the parame-
ers that matched the behavioral distributions. The behavioral and
on-behavioral distributions for five parameters were show to be
ignificantly different. The five significantly different distributions

ere all skewed and so triangular distributions were chosen to rep-

esent these PDF’s (Fig. 10). This process truncated the prior PDF’s.
he GUA was then rerun to understand how this truncation affected
he model’s uncertainty. Fig. 9. The effect of the flood coefficient on recruitment (flood coef = 14).
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dynamics in the model. If c was set to 0, the population in the model
would be constant across years. The value for c actually converged
toward a single solution in the best fit model simulations (Fig. 8a).
The fact that the model was able to simulate a ceff of 0.64 only
ig. 10. Important parameters whose behavioral distributions are significantly d
ehavioral distributions and their newly defined triangular posterior distributions.

.3. Global uncertainty analysis

After the behavioral distributions were defined, the model was
erun through the FAST GSA/UA with the unimportant parameters
et to constants and the posterior triangular PDF’s assigned to the
arameters: Lhigh, Mu, k, L∞, and c. The model results showed simi-

ar optimization from before the MC filtering with a maximum ceff
f 0.64 and a maximum R2 of 0.64. Through MC filtering parame-
er/output model uncertainty was reduced from an average ceff in
he original uncertainty analysis of −26.6 to −7.0 in the MC fil-
ered uncertainty analysis. The minimum ceff was also reduced
rom −154.5 to −91.3. The 95% confidence interval was reduced
rom (−0.01, −65.8) in the original analysis to (0.54, −27.1) in the

C filtered analysis (Figs. 11b and 12).

. Discussion

Given the ecosystem complexity and lack of data, we did not
eek a single optimal solution in the model, but sought the range
f parameters that produced the best model fit. The model param-
ters that produced the best model fit were analyzed in the light
f uncertainty and equifinality. There was one parameter in the
odel, the flood coefficient (c), which initiated the inter-annual

ariability in fish population based on the flood pulse. The flood
oefficient’s sensitivity was low and could initially be regarded as a
elatively unimportant parameter. The most important parameters
n the model that were identified through the sensitivity analy-
is were related to the baseline population size. Depending on the

alues used for the important parameters the baseline population
aried widely between 0 and 80 CPUE. Additionally, all of these
mportant parameters (besides k) exhibited major issues of equi-
nality (Fig. 8 b–f) as they were able to vary throughout their PDF
nt from the non-behavioral distributions. These graphs show histograms of the

ranges while still achieving best fit results. Thus, the average pop-
ulation size fluctuated greatly and could also be modeled using a
variety of parameters values while still producing good results. For
a model to simulate the average population (ceff = 0), only the base-
line or average population must be correct and it is not necessary
to simulate the inter-annual variation; but to get the best model fit,
and reach a ceff above 0, both the baseline population and the inter-
annual variability must be modeled. The flood coefficient (c) was
the only parameter responsible for initiating the this inter-annual
Fig. 11. All GUA results. (a) unfiltered (b) Monte Carlo (MC) filtered. Fig. 12 shows
a blowup of results with coefficient of efficiencies greater than 0.
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The authors would like to thank the AM-W3 NSF IGERT, Mark
ig. 12. Uniform and MC filtered GUA outputs with a coefficient of efficiency greater
han 0.

hrough the proper value of c provides evidence that the flood is an
mportant driver in the system despite the fact that there is equifi-
ality in other portions of the model. This finding also illuminates
gap in existing sensitivity analysis techniques where importance

s defined solely on the magnitude of the change in output and
oes not address how unimportant parameters can be essential for
chieving specific objectives such as model optimization (Saltelli
t al., 1999; Cukier et al., 1978; Koda et al., 1979).

MC filtering was applied to refine parameter/output uncer-
ainty. The important prior distributions were re-set to triangular
istributions where the behavioral parameters were found to be
ignificantly different from the non-behavioral parameters based
n the two sided Smirnov test. Lhigh, Mu, k, L∞, and c were all
ound to have significantly different behavioral parameters and
ere assigned triangular distributions. This method reduced model
arameter/output uncertainty by reducing the 95% confidence

nterval of the coefficient of efficiently between the modeled den-
ity and the measured CPUE from a width of 65.8–27.3. This is useful
nd allows the modeler in a data poor environment to focus on
ikely values within the ranges of physically acceptable PDF’s. The

odeler can then work in tandem with the biologist to ensure that
he new PDF’s makes sense in a real biological setting providing
onverging lines of evidence for a more accurate depiction of the
ystem and its interactions.

Thus the results here that achieved a ceff of 0.64 and an R2

f 0.64 were relatively promising compared to Gaff et al.’s (2004)
odel of fish populations in the Everglades which achieved an R2

f 0.35 where fish density was modeled in response to water depth.
owever, the Okavango fish model is non-spatial and runs on an
nnual time step whereas Gaff et al.’s study is a spatially explicit
odel that ran on a monthly time step. Therefore, there were fewer

ata points simulated in the Okavango model making it perhaps a
impler solution.

Managers must make decisions regarding the use of natural
esources in the Okavango Delta. To help ensure the continuation
f a healthy system these decisions should be based on an under-
tanding of functional mechanisms and relationships. For example,
f spawning is influenced by the flood pulse then ensuring a natural
ood regime is an important characteristic to maintain. When
onitoring data that informs these decisions is lacking, models

an be used to corroborate existing theories on how a system
unctions. This was the intention of this work. We did not seek an
ptimal parameter set for calibration or to predict fish responses

o changes in hydrology. Instead we sought to provide evidence
hat fish population dynamics is driven by the flood pulse using a
uantitative mechanistic model.
5. Conclusion

Several limitations can be identified in this work. The fish data
were from commercial catch and not experimental data and so fish-
erman preferences, knowledge, and other human variables may
play into the data (Walters and Martell, 2004). The data came
from the Panhandle which is more permanently flooded and is less
dynamic than the larger Delta. Additionally, the ORI hydrologic
model which simulates the inundation area was not specifically
calibrated to the Panhandle reservoir and was more focused on the
larger Delta. Finally, the variability of the annual fish population is
not exceptionally dynamic; the maximum annual CPUE only fluc-
tuates between 26 and 39. In heavily fished areas, fish populations
are often much more dynamic, lending to more variability to model.

Overall, this modeling effort was conducted in an area where
data scarcity severely limited model development. Preferably, a
model should be based on monitoring data that directly describes
the relationship between fish population dynamics and the flood
pulse as well as key factors that influence that relationship. In an
absence of this data this model was designed to corroborate existing
ecological theories but not to replace or negate the need for mon-
itoring data. Therefore, future work in this area should focus on
collecting monitoring data that describes the relationship between
the flood pulse and fish population dynamics. For example, experi-
mental fish data that included age or size in addition to daily counts
would improve our understanding of the system and could be
used to assess the performance of the model and inform additional
model development.

This model was able to corroborate the existing conceptual the-
ory that the flood pulse drives fish population dynamics in three
ways. First, the model was able to simulate fish population dynam-
ics (ceff of 0.64). Second, the model parameter that embodied the
flood pulse concept, the flood coefficient, was shown to be impor-
tant for obtaining the optimal model results. And third, the flood
coefficient was shown to converge to an optimal value in the best
fit model simulations. Thus, this mechanistic model corroborated
conceptual models (Merron, 1991; Mosepele et al., 2009) and qual-
itative observations (Hoberg et al., 2002) that fish recruitment is
positively influenced by the magnitude of the flood pulse in the
Okavango Delta. This quantitative linkage between the flood pulse
and fish population dynamics is particularly important in this area
that lacks monitoring data. This linkage also provides information
that is necessary for making informed decisions regarding the man-
agement of hydrologic and ecological resources in the Okavango
Delta. Managers now have quantitative data that shows a linkage
between the hydrology of the Okavango Delta and the ecology of
the fisheries resource.

There are few existing mechanistic models that explore flood
pulse effects on fish recruitment and none of these models have
been developed for the Okavango Delta. This work fills this gap in
research by producing a quantitative mechanistic flood pulsed fish
population model for the Okavango Delta. Additionally, unexpected
outcomes from this work showed that the flood coefficient, and
unimportant parameter, drove optimal model solutions. Because
of the data gaps, the a priori range for the flood coefficient was
unknown. MC filtering was used to revise this range based on
behavioral model outputs. This methodology for refining unknown
parameter distributions is helpful in any data poor area where there
is a lack of information available for defining parameter ranges.
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Jawitz, J.W., Muñoz-Carpena, R., Stuart, M., Grace, K.A., 2008. Development, testing,
and sensitivity and uncertainty analyses of a transport and reaction simula-
tion engine (TaRSE) for spatially distributed modeling of phosphorus in south
Florida peat marsh wetlands. U.S. Geological Survey Scientific Investigations
Report 2008-5029, 109 p.

Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The flood pulse concept in river-floodplain
systems. Can. Spl. Publ. Fish. Aquat. Sci. 106, 110–127.

Kgathi, D.L., Mmopelwa, G., Mosepele, K., 2005. Natural resources assessment in
the Okavango Delta, Botswana: case studies of some key resources. Nat. Resour.
Forum 29, 70–81.

King, J.M., Tharme, R.E., Brown, C.A., 1999. Definition and implementation of
instream flows. Thematic Report for the World Commission on Dams. Cape
Town, South Africa.

King, A.J., Humphries, P., Lake, P.S., 2003. Fish recruitment on floodplains: the roles
of patterns of flooding and life history characteristics. Can. J. Fish. Aquat. Sci. 60,
773–786.

Koda, M., Mcrae, G.J., Seinfeld, J.H., 1979. Automatic sensitivity analysis of kinetic
mechanisms. Int. J. Chem. Kinet. 11, 427–444.

Lorenzen, K., 1996. The relationship between body weight and natural mortality in
juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J.
Fish Biol. 49, 627–647.

Lorenzen, K., 2001. Using population models to assess culture-based fisheries: a
brief review with an application to the analysis of stocking experiments. In: De
Silva S.S. (Ed.), Reservoir and Culture-Based Fisheries: Biology and Management,
ACIAR Proceedings 98, 257–265.

von Bertalanffy, L., 1957. Quantitative laws in metabolism and growth. Q.Rev.Biol.
32, 217–231.

Marshall, B.E., 1979. Observations on the breeding biology of Sarotherodon macrochir
(Boulenger) in Lake Mcilwaine, Rhodesia. J. Fish Biol. 14, 419–424.

Mcgurk, M.D., 1986. Natural mortality of marine pelagic fish eggs and larvae – role
of spatial patchiness. Mar. Ecol.-Prog. Ser. 34, 227–242.

Merona, B., Gascuel, D., 1993. The effects of flood regime and fishing effort on the
overall abundance of an exploited fish community in the Amazon floodplain.
Aquat. Living Resour. 6, 97–108.

Merron, G.S., 1991. The ecology and management of the fishes of the Okavango
Delta, Botswana, with particular reference to the role of the seasonal flood.
Unpublished PhD thesis. Rhodes University.

Mertens, J., Stenger, R., Barkle, G.F., 2006. Multiobjective inverse modeling for soil
parameter estimation and model verification. Vadose Zone J. 5, 917–933.

Mortimer, M.A.E., 1960. Observations on the biology of Tilapia andersonii (Castel-
nau), (Pisees, Cichlidae), in Northern Rhodesia. Joint Fisheries Research
Organization Annual Report. Lusaka 9, pp. 41–67.

Mosepele, K., 2001. Preliminary description of the Okavango Delta fishery. Unpub-
lished technical report. Fisheries Section, Ministry of Agriculture, Gaborone,
Botswana.

Mosepele, K., 2009. Okavango river basin technical diagnostic analysis: environmen-
tal flow module specialist report. Country: Botswana, Discipline: Fish. OKACOM
Project Management Unit, Luanda, Angola.

Mosepele, K., Kolding, J., 2003. Fish stock assessment in the Okavango Delta: pre-
liminary results from a length based analysis. In: Bernard, T., Mosepele, K.,
Ramberg, L. (Eds.), Proceedings of the Environmental Monitoring of Tropical
and Subtropical Wetlands Conference, 4–8 December, 2002. Harry Oppenheimer
Okavango Research Centre, University of Botswana, Maun, Botswana, pp. 363–
390.

Mosepele, K., Mmopelwa, T.G., Mosepele, B., 2003. Characterization and monitoring
of the Okavango Delta artisanal fishery. In: Bernard, T., Mosepele, K., Ramberg,
L. (Eds.), Proceedings of the Environmental Monitoring of Tropical and Subtrop-
ical Wetlands Conference, 4–8 December, 2002. Harry Oppenheimer Okavango
Research Centre, University of Botswana, Maun, Botswana.

Mosepele, K., Moyle, P.B., Merron, G.S., Purkey, D.R., Mosepele, B., 2009. Fish,
Floods, and ecosystem engineers: aquatic conservation in the Okavango Delta,
Botswana. Bioscience 59, 53–64.

Mosepele, K., Nengu, S., 2003. Growth, mortality maturity and length-weight param-
eters of selected fishes of the Okavango Delta, Botswana. ACP-EU Fish. Res. Rep.
14, 67–74.
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