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Abstract
We use tensor product to introduce a new approach to the theory of integration. Such an approach
will strengthen the existing various classical concepts of integral and will provide a continuous
thread tying the subject matter together. The integral of vector-valued functions with respect to
vector-valued additive measures will be covered without any assumption of measurability. As
applications, we state and prove extensions of the Lebesgue fundamental theorems of convergence
in a more general setting.
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1 Introduction
Theories of vector integration of various kinds have been extensively studied and developped by
many authors, owing to its successful application in many areas of functional analysis, probability
theory, stochastic processes. For reference, we especially mention the books by Diestel and Uhl [1],
Dinculeanu [2], Dunfordl and Schwartzl [3] and Kussmaul [4].

*Corresponding author: E-mail: robdera@yahoo.com

www.sciencedomain.org


British Journal of Mathematics and Computer Science 4(22), 3236-3244, 2014

The notion of integral introduced by the author in Robdera [5] provides an extension of all of the
classical notions of integral of vector valued functions with respect to a scalar measure, namely, the
Pettis-, Bochner-, McShane-, Henstock-Kurtzweil integrals of vector valued functions. However, such
an extension does not cover the more general setting of the integral of scalar-valued functions with
respect to vector measures, nor the more general case of the integral of vector-valued functions with
respect to vector-valued additive measures.

The purpose of this note is to introduce, via tensor product, a new general and comprehensive
approach to integration of vector-valued functions with respect to vector-valued additive measures, of
which existing classical integration theories are all special cases. Such an extension will completely
forgo any measurability assumption, allowing us for example to give simple proofs for the Lebesgue
fundamental theorems of convergence in a more general setting.

2 Tensor Integral
Throughout this paper, V ,W and U will denote normed spaces over the same scalar field K (R or
C), and T : V ×W → U is a continuous bilinear mapping such that for every (v, w) ∈ V ×W, the
following inequality holds

‖v‖V = sup
{
‖T (v, w)‖U : ‖w‖W ≤ 1

}
for every v ∈ V. We shall simply call such a mapping a tensor. For details on tensor product of
Banach spaces, we refer the reader to Ryan [6].

Important examples of such bilinear mappings are:

1. the projective tensor product: T (v, w) = v ⊗ w from V ×W → V ⊗̂πW.

2. the duality: T (v, v′) = 〈v, v′〉 from V × V ′ → K where V ′ is the Banach dual of V, and where
K is the scalar field.

3. If V is a Hilbert space, the inner product: T (v, w) = 〈v, w〉 from V × V → K, where K is the
scalar field.

4. The scaling of vectors: T (α, v) = αv from K× V → V, where K is the scalar field.

Note that since K⊗̂πV ' V , the scaling tensor in the above example 4 can actually be considered as
the projective tensor product T (α, v) = αv from K× V → V.

Throughout the paper, Ω is a nonempty set, Σ is a ring of subsets of Ω, and µ : Σ → W is an
additive measure, that is, µ satisfies:

1. µ(∅) = 0;

2. µ(A
⋃
B) = µ(A) + µ(B) for every disjoint pair (A,B) ∈ Σ× Σ.

By a Σ-subpartition of a set A ∈ 2Ω, we mean any finite collection

P = {Ii : Ii ⊂ A, i = 1, 2 . . . , n} ⊂ Σ

satisfying

1. ‖µ(Ii)‖ <∞ for all i;

2. Ii ∩ Ij = ∅ whenever i 6= j.

We denote by
⊔
P the subset of A obtained by taking the union of all elements of P. A Σ-subpartition

P = {Ii : i = 1, . . . , n} is said to be tagged if a point ti ∈ Ii is chosen for each i ∈ {1, . . . , n}. We
write P := {(Ii, ti) : i ∈ {1, . . . , n}} if we wish to specify the tagging points. We denote by Π(A,Σ)
the collection of all tagged Σ-subpartitions of the set A. The mesh or the norm of P ∈ Π(A,Σ) is
defined to be

‖P‖ = max{‖µ(Ii)‖ : Ii ∈ P}.
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If P,Q ∈ Π(A,Σ), we say that Q is a refinement of P and we write Q � P if ‖Q‖ ≤ ‖P‖ and⊔
P ⊂

⊔
Q. It is readily seen that such a relation does not depend on the tagging points. It is also

easy to see that the relation � is transitive on Π(A,Σ). If P,Q ∈ Π(A,Σ), we denote

P ∨Q := {I \ J, I ∩ J, J \ I : I ∈ P, J ∈ Q}.

Clearly, P ∨ Q ∈ Π(A,Σ), P ∨ Q � P and P ∨ Q � Q. Thus the relation � has the upper bound
property on Π(A,Σ). We then infer that the set Π(A,Σ) is directed (in the sense of Moore-Smith as
described in McShane [7],) by the binary relation �.

Definition 2.1. Let V ,W and U be Banach spaces, and let T : V × W → U be a tensor. Let
Ω be a nonempty set and Σ ⊂ 2Ω. Given a function f : Ω → V , and a tagged Σ-subpartition
P = {(Ii, ti) : i ∈ {1, . . . , n}}, we define the tensor Riemann sum of f at P with respect to an
additive measure µ : Σ→W to be the element of U given by

fµ(P ) =

n∑
i=1

T (f(ti), µ(Ii)).

Thus the function P 7→ fµ(P ) is a U -valued net defined on the directed set (Π(A,Σ),�). For
convenience, we are going to denote the net-limit by∫

A

T (f, dµ) := lim
(Π(A,Σ),�)

fµ(·)

whether or not such a limit exists. For details on net-limit we refer the reader to McShane [7].
The notion of tensor integrability of a function with respect to a vector additive measure is defined

as follows.

Definition 2.2. Let V ,W and U be Banach spaces, and let T : V ×W → U be a tensor. Let Ω be
a nonempty set and Σ ⊂ 2Ω and let µ : Σ → W be an additive measure. We say that a function
f : Ω → V is Σ, T -integrable over a set A with respect to µ (or Σ, µ, T -integrable) if the limit∫
A
T (f, dµ) represents a vector in U. The vector

∫
A
T (f, dµ) is then called the Σ, µ, T -integral of f

relative to µ over the set A.

In other words, f : Ω → V is Σ, µ, T -integrable over the set A with Σ, µ, T -integral
∫
A
T (f, dµ) if

for every ε > 0, there exists a Σ-subpartition P0 of the set A such that for every P � P0 in Π(A,Σ)
we have ∥∥∥∥∫

A

T (f, dµ)− fµ(P )

∥∥∥∥
U

< ε. (2.1)

If Σ = 2Ω, we simply say that f : Ω→ V is µ, T -integrable over the set A.

Remark 2.1. Note that in the above definition, no notion of measurability is required.

We notice that the uniqueness of net-limit ensures us that there exists at most one vector∫
A
T (f, dµ) that satisfies the property in Definition 2.2. We shall denote by IT (A,Σ, µ, V ) the set

of all functions f : Ω → V that are Σ, µ, T -integrable over a given subset A of Ω. We also infer
that being a limit operator, the tensor integral is linear, and that IT (A,Σ, µ, V ) is a vector space. If
Σ = 2Ω, we simply write IT (A,Σ, µ, V ) = IT (A,µ, V ).

It is also clear that if A and B are disjoint subsets of Ω, then every subpartition R of the disjoint
union A t B is of the form P t Q where P ∈ Π(A) and Q ∈ Π(B). It then follows that fµ(R) =
fµ(P ) + fµ(Q). Thus if a function f : Ω → V is µ-tensor integrable over both a set A and a set B,
such that A ∩B = ∅, then f is µ-tensor integrable over the disjoint union A tB and∫

AtB
T (f, dµ) =

∫
A

T (f, dµ) +

∫
B

T (f, dµ).
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We finish this section with few familiar examples. If K is the scalar field, it is wel known fact
that K⊗̂πW ' W. Therefore the tensor integral with respect to the scaling of vectors T (α,w) = αw
from K ×W → W reduces to the integral of scalar functions with respect to vector-valued additive
measures. Likewise the tensor integral relative to a scaling of vectors T (v, α) = αv V × R → V,
and if µ : Σ → R is a nonnegative additive measure, the above defined notion of tensor integrability
coincides with the special case of the notion of the extended integrability of vector valued functions
with respect to a monotonic, σ-subadditive, nonnegative set function introduced in Robdera [5]. It
follows that all notions of the classical integrability of vector valued functions with respect to a scalar
measure, namely, the Pettis-, Bochner-, vector-valued McShane-, vector-valued Henstock-Kurtzweil
integrals are all special cases of tensor integrability relative to the scaling tensor.

3 Projective Tensor Integral

In this section, we shall focus on the special case of tensor integral with respect to the projective
tensor product: T (v, w) = v⊗w from V ×W → V ⊗̂πW. We shall denote by π the projective norm on
V ⊗̂πW, and we denote the corresponding space of Σ-tensor integrable functions by I⊗(A,Σ, µ, V ).

For every f : Ω→ V, we define the Σ, µ-variation of f over the set A ⊂ Ω to be

varΣ,µ(f,A) := sup {π (fµ(P )) : P ∈ Π(A,Σ)} .

We say that the function f is of bounded Σ, µ-variation if varΣ(f,A) <∞.
Since every convergent net is bounded, we notice that if f ∈ I⊗(A,Σ, µ, V ) then f is of bounded

Σ, µ-variation. We then define for f ∈ I⊗(A,Σ, µ, V )

‖f‖I = varΣ,µ(f,A).

It is readily seen that f 7→ ‖f‖I defines a seminorm on the space I⊗(A,Σ, µ, V ).

Theorem 3.1. Let V and W be Banach spaces, Ω a nonempty set and Σ ⊂ 2Ω. Let µ : Σ → W be
an additive measure such that ‖µ(C)‖W <∞ for all C ∈ Σ. Then the function space I⊗(A,Σ, µ, V )
is complete with respect to the seminorm ‖·‖I .

Proof. Let n 7→ fn be a Cauchy sequence in I⊗(A,Σ, µ, V ) with respect to the seminorm ‖·‖I . Fix
ε > 0, and choose Nε > 0 such that for m,n > Nε in N,

‖fn − fm‖I = sup {π ((fn − fm)µ(P )) : P ∈ Π(A,Σ)} < ε. (3.1)

In particular, if we consider the subpartition {(A,ω)} ∈ Π(A,Σ), then for m,n > Nε in N,

ε ≥ π ((fn(ω)− fm(ω))⊗ µ(A)) = ‖fn(ω)− fm(ω)‖V ‖µ(A)‖W .

We infer that the sequence n 7→ fn(ω) is Cauchy in V. Since V is a Banach space, we can define a
function

f : Ω → V
ω 7→ lim

n→∞
fn(ω)

On the other hand, since fn, fm ∈ I⊗(A,Σ, µ, V ), there exist Pn, Pm ∈ Π(A,Σ) such that

π

(
fn,µ(P )−

∫
A

fn ⊗ dµ)

)
< ε whenever P � Pn,

π

(
fm,µ(P )−

∫
A

fm ⊗ dµ)

)
< ε whenever P � Pm.
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Combining these last two inequalities with (3.1), it follows that for m,n > Nε in N and for every
P � Pn ∨ Pm, we have

π

(∫
fn ⊗ dµ−

∫
A

fn ⊗ dµ
)
≤ π

(
fn,µ(P )−

∫
A

fn ⊗ dµ)

)
+π ((fn − fm)µ(P ))

+π

(
fm,µ(P )−

∫
A

fm ⊗ dµ)

)
< 3ε.

This proves that the sequence n 7→
∫
A
fn ⊗ dµ is Cauchy in the Banach space V ⊗̂πW, and thus

converges to some element, say a ∈ V ⊗̂πW.
Now let P = {(Ii, ti) : i ∈ {1, . . . , k}} ∈ Π(A,Σ). For each ti ∈ Ii, there exists Ni > Nε such

that for m,n > Ni in N,

‖fn(ti)− fm(ti)‖V ‖µ(Ii)‖W = π ((fn(ti)− fm(ti))⊗ µ(Ii))) ≤
ε

2i
.

It follows that for m,n > max {Ni : i = 1, . . . , k} =: NP , we have

π ((fn − fm)µ(P )) ≤
k∑
i=1

‖fn(ti)− fm(ti)‖V ‖µ(Ii)‖W ≤ ε.

If we let m→∞, we obtain π ((fn − f)µ(P )) ≤ ε.
On the other hand, since a = lim

n→∞

∫
A
fn ⊗ dµ, there exists N > NP such that for m > N

π

(∫
A

fm ⊗ dµ− a
)
< ε.

Thus for n,m > N,

π (fµ(P )− a) ≤ π ((f − fn)µ(P )) + π ((fn − fm)µ(P ))

+π

(∫
A

fm ⊗ dµ− a
)
< 3ε.

Since ε > 0 is arbitrary, this shows that f ∈ I⊗(A,Σ, µ, V ) and that
∫
A
f ⊗ dµ = a.

It should be clear that if the set C ∈ Σ is such that µ(C) = 0, then for all subpartitions P ∈ Π(C),
fµ(P ) = 0, and thus

∫
C
f ⊗ dµ = 0. It follows that the tensor-integral does not distinguish between

functions which differ only on set C ∈ Σ such that µ(C) = 0. To make this more precise,∫
A

f ⊗ dµ =

∫
A

g ⊗ dµ whenever µ{x ∈ A : f(x) 6= g(x)} = 0.

We say that a function f is essentially equal on A to another function g, and we write f ∼ g if
µ{x ∈ A : f(x) 6= g(x)} = 0. It is readily seen that the relation f ∼ g is an equivalence relation
on I⊗(A,Σ, µ, V ). We shall denote by I⊗(A,Σ, µ, V ) the quotient space I⊗(A,Σ, µ, V )/ ∼ . The
restriction of the seminorm ‖·‖I is a norm on I⊗(A,Σ, µ, V ) that makes it a Banach space.

4 Fundamental Theorems of Convergence
In this section, we extend and prove the Lebesgue convergence theorems in the setting of tensor
integral with respect to an additive measure taking values in a Banach lattice.
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We assume that the Banach space W is equipped with an order relation ≤ that will make it a
Banach lattice. We consider a nonnegative additive measure µ : Σ → W . The following properties
are readily verified.

• µ is monotonic, that is µ(C) ≤ µ(B) whenever C ⊂ B in Σ.

• µ is countably subadditive, that is, µ(
⋃
n∈N

An) ≤
∑
n∈N

µ(An) whenever An ∈ Σ are such that⋃
n∈N

An ∈ Σ.

Throughout this section, we shall consider tensor integral relative to the scaling tensor τ(α,w) = αw
from K×W →W and relative to an additive lattice measure µ : Σ→W.

Fatou’s Lemma
We say that a function f : Ω → V is norm Σ, µ, τ -integrable over a set A ⊂ Σ if the function ‖f‖V is
integrable Σ, µ, τ -integrable over A.

Theorem 4.1. Let fn : Ω → V be a sequence of norm Σ, µ, τ -integrable functions over a set A ⊂ Σ
such that for every ω ∈ A, f(ω) := lim infn→∞ ‖fn(ω)‖V . Then∫

A

fdµ ≤ lim inf
n→∞

∫
A

‖fn(·)‖V dµ. (4.1)

Proof. We first note that the tensor integrals on the left hand side and the right hand side in (4.1) are
both valued in the Banach lattice (W,≤) and the inequality is in the sense of the lattice structure of of
W .

By the definition of the tensor integral, we are done if we show that

fµ(P ) ≤ lim inf
n→∞

∫
A

‖fn(·)‖V dµ

for all P = {(Ii, ti) : i = 1, . . . ,m} ∈ Π(A).

Fix P ∈ Π(A,Σ). Define ϕP (ω) =
∑
Ii∈P

1I(ω)f(ti). We notice that ϕP,µ(P ) = fµ(P ). We let

m = min{ϕP (ω) : ω ∈ A}
M = max{ϕP (ω) : ω ∈ A},

and we define
E = {ω ∈ A : ϕP (ω) > m}.

We notice that mµ(E) ≤ ϕP,µ(P ) in the Banach lattice W. Fix ε > 0 and define

En = {ω ∈ A : ‖fk(ω)‖V > (1− ε)ϕP (ω), ∀k ≥ n}.

Then E ⊂
⋃
nEn, and En ⊂ En+1 for all n. We have

lim
n→∞

µ(E \ En) = µ(∅) = 0.

Thus we can choose an integer n0 such that ‖µ(E \ En)‖W < ε for all n > n0. Thus if n > n0, we
have ∫

A

‖fn(·)‖V dµ ≥
∫
En

‖fn(·)‖V dµ ≥ (1− ε)
∫
En

ϕP (ω)dµ.
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On the other hand, ∫
A

ϕP dµ =

∫
E

ϕP dµ =

∫
En

ϕP dµ+

∫
E\En

ϕP dµ.

Hence ∫
A

‖fn(·)‖V dµ ≥ (1− ε)
∫
En

ϕP (ω)dµ

= (1− ε)

[∫
A

ϕP dµ−
∫
E\En

ϕP dµ

]

≥ (1− ε)
[∫

A

ϕP dµ−Mµ(E \ En)

]
=

∫
A

ϕP dµ− ε
[∫

A

ϕP dµ+Mµ(E \ En)

]
.

Since ε > 0 is arbitrary, we get that

lim inf
n→∞

∫
A

‖fn(·)‖V dµ ≥
∫
A

ϕP dµ = fµ(P ).

The proof is complete.

Monotone Convergence Theorem
We first notice that if µ : Σ→W is an additive measure, then we have the following

Proposition 4.1. Let f ,g : Ω → R be both Σ, µ, τ -integrable over a A, and h : Ω → R such that
f(ω) ≤ h(ω) ≤ g(ω), for all ω ∈ A then

1. h is Σ, µ, τ -integrable and

2.
∫
A
fdµ ≤

∫
A
hdµ ≤

∫
A
gdµ.

Proof. It suffices to notice that for all P ∈ Π(A,Σ), one has fµ(P ) ≤ fµ(P ) ≤ fµ(P ).

In particular, we infer from the above proposition that the tensor-integral with respect to an
additive lattice measure is monotonic.

Theorem 4.2. Let fn : Ω→ V be a sequence of norm Σ, µ-tensor integrable functions satisfying:

1. 0 ≤ ‖fn(ω)‖V ≤ ‖fn+1(ω)‖V , for every ω ∈ A ⊂ Ω and for all n ∈ N;

2. for every ω ∈ A, f(ω) := limn→∞ fn(ω);

Then ‖f‖ : A→ R is Σ, τ -integrable with respect to µ if and only if lim
n→∞

∫
A
‖fn(·)‖V dµ exists in

W . Moreover, ∫
A

‖f(·)‖V dµ = lim
n→∞

∫
A

‖fn(·)‖V dµ.

Proof. It follows from the monotonicity property of the tensor integral (Proposition 4.1) that∫
A

‖fn(·)‖V dµ ≤
∫
A

‖fn+1(·)‖V dµ ≤
∫
A

‖f(·)‖V dµ.

Hence the sequence n 7→
∫
A
‖fn(·)‖V dµ is a non-decreasing net of vectors in W . On the one hand,

if f is Σ, µ-tensor integrable, that is, if
∫
A
‖f(·)‖V dµ exists as a vector in W then for every n∫

A

‖fn(·)‖V dµ ≤
∫
A

‖f(·)‖V dµ.
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On the other hand, if lim
n→∞

∫
A
‖fn(·)‖V dµ exists in W , then by Fatou’s Lemma, we have∫

A

‖f(·)‖V dµ ≤ lim inf
n→∞

∫
A

‖fn(·)‖V dµ ≤ lim
n→∞

∫
A

‖fn(·)‖V dµ.

In both cases, we have lim
n→∞

∫
A
‖fn(·)‖V dµ =

∫
A
‖f(·)‖V dµ.

Dominated Convergence Theorem
Again µ : Σ→W is an additive measure.

Theorem 4.3. Let fn : Ω → V be a sequence of norm Σ, µ, τ -integrable functions satisfying the
following properties:

1. fn(ω)→ f(ω) for all ω ∈ A ⊂ Ω;

2. there exists a real valued function h ∈ I(A,Σ, µ) such that ‖fn(ω)‖V ≤ h(ω) for all ω ∈ A,
and for all n ∈ N.

Then
1. f is norm Σ, µ, τ -ntegrable;
2. lim

n→∞

∫
A
‖f − fn‖V dµ = 0;

3.
∫
A
fdµ = lim

n→∞

∫
A
fndµ.

Proof. It follows from the conditions of the theorem that for all ω ∈ A, and for all n ∈ N, we have

‖f(ω)− fn(ω)‖V ≤ 2h(ω)

and lim sup
n→∞

‖f(ω)− fn(ω)‖ = 0 for each ω ∈ A. Using the linearity and the monotonicity of the

integral, we get that

π

(∫
A

fdµ−
∫
A

fndµ

)
= π

(∫
A

(f − fn)dµ

)
≤
∫
A

‖f − fn‖V dµ.

By Fatou’s Lemma, we have

lim sup
n→∞

∫
A

‖f − fn‖V dµ ≤
∫
A

lim sup
n→∞

‖f − fn‖V dµ = 0.

The result follows.

It is easily noticed that for the special case where Σ is a σ-algebra and µ : Σ→ R is an Lebesgue
measure on Σ, each one of the above theorems reduces to the usual Lebesgue convergence theorems.

5 Conclusions
We have introduced a new comprehensive approach to integration theory.
a In Section (2), the notion of tensor integral of Banach space valued functions has been introduced.
b In Section (3), the special case of the projective tensor integral is discussed.
c In Section (4), we stated and proved extensions of the Lebesgue convergence theorems.
.
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