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ON ALMOST SURE BEHAVIOR OF STABLE SUBORDINATORS
OVER RAPIDLY INCREASING SEQUENCES∗

R. VASUDEVA† AND G. DIVANJI‡

Abstract. Let (X(t), t � 0) with X(0) = 0 be a stable subordinator with index 0 < α < 1
and let (tk) be an increasing sequence such that tk+1/tk → ∞ as k → ∞. Let (at) be a positive
nondecreasing function of t such that a(t)/t � 1. Define Y (t) = X(t + a(t)) − X(t) and Z(t) =
X(t) − X(t − a(t)), t > 0. We obtain law-of-the-iterated-logarithm results for (X(tk)), (Y (tk))
and Z(tk), properly normalized.
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1. Introduction. Let W (t), t � 0, denote a standard Wiener process. If (tk) is such
that lim supk→∞(tk+1/tk) < ∞, then proceeding as in [1], one can show that

lim sup
k→∞

W (tk)√
2tk log log tk

= 1 a.s.

But for some sequences (tk) with tk+1/tk → ∞ we have limk→∞(W (tk)/
√

2tk log log tk) = 0
a.s. In such cases the normalizing sequence

√
2tk log log tk will not be precise enough to

give a.s. bounds for W (tk). In general whenever tk+1/tk → ∞, Schwabe and Gut [5] have
pointed out that

√
2tk log log tk is no longer the proper normalizing sequence and it has to be

replaced by
√

2tk log k. (These results have been obtained by the above authors for partial
sums of independent and identically distributed random variables with finite variance.) This
observation motivated us to examine whether similar things happen in the case of stable
subordinators. The answer turns out to be affirmative, as established in the next section.

We first present the following result of [6] on the behavior of the limit supremum

of (X(tk)/t
1/α
k )1/ log log tk and limit infimum of (X(tk)/(t

1/α
k (log log tk)(α−1)/α)) for sequen-

ces (tk), when (tk) is at most geometrically increasing and when (tk) is at least geometrically
increasing. The case tk+1/tk → ∞ comes under the class of at-least-geometrically-increasing
sequences.

Theorem A. Let X(t) denote a stable subordinator with index α, 0 < α < 1. Define
θα = α(1 − α)(1−α)/α(cos(πα/2))−1/α. If lim supk→∞(tk+1/tk) < ∞, then

lim sup
k→∞

(
X(tk)

t
1/α
k

)1/ log log tk

= e1/α a.s. and lim inf
k→∞

X(tk)

t
1/α
k (log log tk)(α−1)/α

= θα a.s.

If lim infk→∞ tk+1/tk > 0, then

lim sup
k→∞

(
X(tk)

t
1/α
k

)1/ log log tk

= eλ/α a.s.,

where λ = inf{ε > 0:
∑∞

k=k0
(log tk)−ε < ∞}, and

lim inf
k→∞

X(tk)

t
1/α
k (log log tk)(α−1)/α

= λθα a.s.,
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where λ = inf{ε > 0:
∑∞

k=k0
(log tk)β < ∞, β = εα/(α−1)}.

Remark. When (tk+1/tk) is at most geometrically fast, we notice that both the limit
supremum and the limit infimum remain unchanged, whereas when (tk+1/tk) is more than
geometrically fast, the limit supremum and the limit infimum both change depending on the
speed of (tk). The limit supremum result depends on the right (heavy) tail of the process,
whereas the limit infimum result depends on the tail near zero, which is exponentially fast.

When tk = 22˙̇
˙
2

(k times) one can show that the limit supremum becomes 1 (the limit
infimum of the same function is always 1 for any (tk)) and the limit infimum (or limit)
becomes ∞. In [6] it has been observed that over any (tk) ↑∞,

lim inf
k→∞

(
X(tk)

t
1/α
k

)1/ log log tk

= 1 a.s. and lim sup
k→∞

X(tk)

t
1/α
k (log log tk)(α−1)/α

= ∞ a.s.

In [6] it was also shown that for certain sequences (tk) that are faster than geometric, the
iterated logarithm results can still be obtained by replacing “log log” with “log log log.” By
following [5], we now obtain a.s. results with log k in place of log log tk whenever tk+1/tk → ∞.
We also obtain similar results for (Y (tk)) and (Z(tk)).

2. Main results.
Theorem 1. Let (tk) be such that tk+1/tk → ∞ as k → ∞. Then

(A) lim sup
k→∞

(
X(tk)

t
1/α
k

)1/ log k

= e1/α a.s.

Moreover, if tk+1/tk � k(1+δ), for some δ > 0, then

(B) lim inf
k→∞

X(tk)

t
1/α
k (log k)(α−1)/α

= θα a.s.

Proof. We first establish (A). Observe that t−1/αX(t) = X(1), in distribution, where X(1)
is a positive stable random variable with index α. Hence for any given ε > 0, by the tail
behavior of X(1), we have

P
{
X(tk) > t

1/α
k k(1+ε)/α} < Ck−(1+ε).

By the Borel–Cantelli lemma,

P
{
X(tk) > t

1/α
k k(1+ε)/α i.o.

}
= 0(1)

(here “i.o.” stands for “infinitely often”). Also, using the fact that tk+1/tk → ∞ as k → ∞,

one can show that for large k, (X(tk+1)−X(tk))/t
1/α
k is distributionally equivalent to X(1),

and hence

P
{
X(tk) −X(tk−1) > t

−1/α
k k(1−ε)/α} � Ck−(1−ε).

Since (X(tk)−X(tk−1)) are mutually independent and
∑∞

k=1 k
−(1−ε) = ∞, by again applying

the Borel–Cantelli lemma one gets that

P
{
X(tk) −X(tk−1) > t

−1/α
k k(1−ε)/α i.o.

}
= 1.(2)

From the fact that X(t) is increasing, we have X(tk) > X(tk) −X(tk−1). Hence (2) implies
that

P
{
X(tk) > t

−1/α
k k(1−ε)/α i.o.

}
= 1.(3)

Now (1) and (3) together establish (A) of the theorem.
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For any ε > 0, we have

P
{
t
−1/α
k X(tk) < (1 − ε) θα(log k)(α−1)/α} � C(log k)−(1−α)/2α exp

{
− (1 + ε1) log k

}
= C(log k)−(1−α)/αk−(1+ε)

for some ε1 > 0. Hence by the Borel–Cantelli lemma, one gets

P
{
t
−1/α
k X(tk) < (1 − ε) θα(log k)−(1−α)/α i.o.

}
= 0.(4)

Again recalling that for large k, t
−1/α
k (X(tk) −X(tk−1)) has the same distribution as X(1),

one gets

P
{
t
−1/α
k

(
X(tk) −X(tk−1)

)
< (1 + ε) θα(log k)−(1−α)/α

}
� Ck−(1−ε).

By the Borel–Cantelli lemma, we have

P
{
t
−1/α
k

(
X(tk) −X(tk−1)

)
< (1 + ε) θα(log k)−(1−α)/α i.o.

}
= 1.(5)

Also,

P
{
t
−1/α
k X(tk−1) > ε θα(log k)−(1−α)/α}

� P
{
t
−1/α
k−1 X(tk−1) > ε t

1/α
k t

−1/α
k−1 θα(log k)−(1−α)/α} � Ck−(1+δ)

for some δ > 0. By the Borel–Cantelli lemma, one gets

P
{
t
−1/α
k X(tk−1) > ε θα(log k)−(1−α)/α i.o.

}
= 0.(6)

Relations (4), (5), and (6) together complete the proof of (B).

3. Boundary crossings associated with the law of the iterated loga-
rithm. Define, for any ε > 0,

Uk =

⎧⎪⎨
⎪⎩

1 if

(
X(tk)

t
1/α
k

)1/ log k

> e(1+ε)/α,

0 otherwise.

Let Nε =
∑∞

k=1 Uk. Note that Nε is a proper random variable giving the number of boundary

crossings of (X(tk)/t
1/α
k )1/ log k. Then ENε =

∑∞
k=1 P{Uk = 1} �

∑∞
k=1 k

−(1+ε) < ∞.
Hence the expected number of boundary crossings is finite. Similarly, if N∗

ε is the number of
crossings of the lower boundary (1 − ε) θα of the sequence (X(tk)/t

1/α
k (log k)(α−1)/α), then

one can show that EN∗
ε < ∞.

We now discuss the behavior of (Y (tk)) when (tk) satisfies tk+1/tk → ∞ as k → ∞.
First we present the following known result for (Y (t)) as t → ∞.

Theorem B. Let d(t) = log(t/at) + log log t. Then

P

{
lim sup

(
Y (t)

a
1/α
t

)1/d(t)

= e1/α

}
= 1 and P

{
lim inf

(
Y (t)

a
1/α
t

)1/d(t)

= 1

}
= 1.

For the proof see [6].
Remark. Let tk = ρk, ρ > 1. When at = t1/2, we note that d(t) ∼ (log t)/2 and

limk→∞(Y (tk)/a
1/α
tk

)1/d(tk) = 1 a.s. But if at = t/2, then

d(t) ∼ log log t and lim sup
k→∞

(
Y (tk)

a
1/α
tk

)1/d(tk)

= e1/α a.s.



ON ALMOST SURE BEHAVIOR OF STABLE SUBORDINATORS 721

Hence for a geometrically increasing (tk), the behavior of (Y (tk)) changes with the form
of at. However, for (tk) such that tk+1/tk → ∞ as k → ∞ we have a unified result, as
presented in what follows.

Theorem 2. Let (tk) be such that tk+1/tk → ∞ as k → ∞. Then

P

{
lim sup

(
Y (tk)

a
1/α
tk

)1/ log k

= e1/α

}
= 1 and P

{
lim inf

(
Y (tk)

a
1/α
tk

)1/ log k

= 1

}
= 1.

Further, all points in [1, e1/α] are a.s. limit points of (Y (tk)/a
1/α
tk

)1/ log k.
Proof. From the fact that at < t, note that tk+1/tk → ∞ as k → ∞ implies that

tk+1/(tk + atk ) → ∞ as k → ∞, and hence for k large (Y (tk)) are mutually independent.

From the fact that Y (t)/a
1/α
t is distributionally the same as X(1), the limit supremum and

limit infimum results in the theorem follow by a straightforward application of the Borel–
Cantelli lemma.

A point ep, belonging to [1, e1/α], is a limit point if for any ε > 0,

P

{
k(p−ε)/α <

Y (tk)

a
1/α
tk

< k(p+ε)/α i.o.

}
= 1.

From the fact that

P

{
k(p−ε)/α <

Y (tk)

a
1/α
tk

< k(p+ε)/α

}
� k−(p−ε) and

∞∑
k=1

k−(p−ε) = ∞,

applying the Borel–Cantelli lemma we note that ep is an a.s. limit point of (Y (tk)/a
1/α
tk

)1/ log k.
The proof of the theorem is complete.

Theorem 3. Let (tk) be such that tk+1/tk → ∞ as k → ∞. Then

P

{
lim sup
k→∞

Y (tk)

a
1/α
tk

(log k)(α−1)/α
= ∞

}
= 1 and P

{
lim inf
k→∞

Y (tk)

a
1/α
tk

(log k)(α−1)/α
= θα

}
= 1.

The proof follows along the lines of Theorem 2, but by considering the tail behavior
near zero. The details are omitted.

Define

Qk =
1

a
1/α
tk

(
(Y (tk))1/ log k, (Z(tk))1/ log k), Rk =

1

a
1/α
tk

(log k)(α−1)/α

(
Y (tk), Z(tk)

)

and introduce the sets S1 = {(x, y) : x � 0, y � 0, xy � e1/α} and S2 = {(x, y) :
x � 0, y � 0, xy � θα}. Then we have the following result.

Theorem 4. Let tk+1/tk → ∞ as k → ∞. Then set of all a.s. limit points of (Qk)
coincides with S1, and that of (Rk) coincides with S2.

Proof. For k large, (Y (tk), Z(tk)) becomes a mutually independent sequence with inde-
pendent components. The proof follows along the lines of [4]. The details are omitted.
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